

модуль телеуправления TOPAZ MC DOUT16 AC/DC5-220V1A-Pr

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

ПЛСТ.424219.011.2 РЭ

Москва 2022

ОГЛАВЛЕНИЕ

1	(опис	АНИЕ И РАБОТА	3	
	1.1	Наз	вначение изделия	3	
	1.2	Mo	дификации и условные обозначения	3	
	1.3	Tex	нические характеристики	3	
	1	.3.1	Конструкция	3	
	1	.3.2	Рабочие условия эксплуатации	4	
	1	.3.3	Безопасность и электромагнитная совместимость	4	
	1	.3.4	Надежность	4	
	1	.3.5	Питание	4	
	1	.3.6	Каналы дискретного вывода	5	
	1	.3.7	Коммуникационные порты	5	
	1.4	Ком	иплектность	5	
	1.5	Устр	ройство и работа	5	
	1	.5.1	Телеуправление	6	
2		испо	ЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	6	
	2.1	Экс	плуатационные ограничения и меры безопасности	6	
	2.2	Moi	нтаж	7	
	2	.2.1	Подключение питания и разрешения телеуправления	8	
	2	.2.2	Подключения по интерфейсу RS-485	8	
	2	.2.3	Подключение каналов телеуправления	9	
	2.3	ПО	«HW TOPAZ (ITDS) Конфигуратор»	9	
3		МАРК	КИРОВКА И ПЛОМБИРОВАНИЕ	12	
4	•	УПАКОВКА			
5	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ13				
6	ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ				
7	•	утилі	ИЗАЦИЯ	14	
п	рил	ОЖЕЬ	HUF A	15	

Настоящее руководство по эксплуатации (РЭ) предназначено для ознакомления со сведениями о конструкции, принципе действия, технических характеристиках модуля телеуправления **TOPAZ MC DOUT16 AC/DC5-220V1A-Pr** (далее по тексту — модуль), его составных частях, указания, необходимые для правильной и безопасной эксплуатации, технического обслуживания, ремонта, хранения и транспортирования, а также схемы подключения модуля к цепям питания, телемеханики и передачи данных.

Перед началом работы с модулем необходимо ознакомиться с настоящим РЭ.

РЭ предназначено для эксплуатационного персонала и инженеров-проектировщиков АСУ ТП, систем телемеханики и диспетчеризации.

В СВЯЗИ С ПОСТОЯННОЙ РАБОТОЙ ПО СОВЕРШЕНСТВОВАНИЮ ИЗДЕЛИЯ, В КОНСТРУКЦИЮ И ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ МОГУТ БЫТЬ ВНЕСЕНЫ ИЗМЕНЕНИЯ, НЕ УХУДШАЮЩИЕ ЕГО ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И НЕ ОТРАЖЕННЫЕ В НАСТОЯЩЕМ ДОКУМЕНТЕ.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение изделия

Модуль предназначен для использования в качестве устройства сопряжения с объектом (УСО) и выполнения следующих функций:

- управления внешним оборудованием (ТУ);
- управление сигнализацией;
- регулирования.

Модуль имеет защиту от короткого замыкания в коммутируемых нагрузках.

1.2 Модификации и условные обозначения

Схема обозначения модуля телеуправления **TOPAZ MC DOUT16 AC/DC5-220V1A-Pr** при заказе:

ТОРАZ - название торговой марки

 MC
 название серии

 DOUT
 тип модуля

- количество каналов дискретного вывода

AC/DC - напряжение каналов ТУ (переменное/постоянное)

5-220V - рабочий диапазон напряжений

1A - максимальный коммутируемый переменный ток

Pr - исполнение по помехоустойчивости

1.3 Технические характеристики

1.3.1 Конструкция

Конструктивно модуль выполнен в металлическом корпусе, не поддерживающем горение с креплением для установки на DIN-рейку. Вентиляционные отверстия корпуса расположены сверху и снизу корпуса. Степень защиты корпуса IP20 по ГОСТ 14254-2015. По устойчивости к механическим воздействиям, модуль относится к классу M40 по ГОСТ 30631-99. Габаритные размеры модуля (ШВГ) 210х100х70 мм. Масса модуля не более 0,5 кг.

Внешний вид, описание входов, выходов и индикаторов модуля приведены в приложении А настоящего руководства.

1.3.2 Рабочие условия эксплуатации

По рабочим условиям эксплуатации (климатическим воздействиям) модуль соответствует изделиям группы С2 по ГОСТ Р 52931-2008. По устойчивости к воздействию атмосферного давления модуль соответствует группе Р2 по ГОСТ Р 52931-2008.

Таблица 1 – Рабочие условия эксплуатации

Параметр	Значение
Температура окружающего воздуха, ⁰ С	от -40 до +70
Относительная влажность воздуха при температуре 30 °C и ниже, %	до 100
Атмосферное давление воздуха, кПа	60 ÷ 106,7

1.3.3 Безопасность и электромагнитная совместимость

По устойчивости к электромагнитным помехам модуль соответствует ГОСТ Р 51318.11-2006 для класса А группы 1, и ГОСТ Р 51317.6.5-2006 для оборудования, применяемого на электростанциях и подстанциях.

Радиопомехи не превышают значений, установленных для класса A по ГОСТ 30805.22-2013, для класса A по ГОСТ 30804.3.2-2013.

Модуль, в части защиты от поражения электрическим током, соответствует требованиям ГОСТ 12.2.091-2012. Класс защиты от поражения электрическим током I по ГОСТ 12.2.007.0-75.

Электрическое сопротивление изоляции модуля не менее 2,5 МОм. Электрическая прочность изоляции модуля выдерживает без разрушения испытательное напряжение 2500 В, 50 Гц в течение 1 мин.

Модуль соответствует требованиям технических регламентов Таможенного союза ТР ТС 004/2011 «О безопасности низковольтного оборудования», ТР ТС 020/2011 «Электромагнитная совместимость технических средств».

1.3.4 Надежность

Модуль является восстанавливаемым, ремонтируемым изделием, предназначенным для круглосуточной эксплуатации в стационарных условиях в производственных помещениях. Режим работы модуля непрерывный. Продолжительность непрерывной работы не ограничена. Норма средней наработки на отказ в нормальных условиях применения составляет 140 000 ч. Полный средний срок службы составляет 30 лет. Среднее время восстановления работоспособности на объекте эксплуатации (без учета времени прибытия персонала и при наличии ЗИП) не более 30 минут.

1.3.5 Питание

Питание модуля осуществляется через клеммные блоки, расположенные в верхней части модуля. Номинальное напряжение питания постоянного тока модуля 24 В. Рабочий диапазон питания модуля 15 \div 30 В. Потребляемая мощность при номинальном значения напряжения питания не более 5,8 Вт.

Кратковременные перерывы питания (до 200 мс) не влияют на работу модуля. При нарушении питания на время более 200 мс, модуль корректно завершает свою работу, а при восстановлении напряжения питания модуль переходит в рабочий режим автоматически. Под корректным завершением работы в данном случае понимается отсутствие ложного формирования команд ТУ, передачи ложной информации и потери конфигурационной информации. Модуль обеспечивает нормальную работу при произвольном изменении напряжения питания в пределах рабочего диапазона. Время установления рабочего режима при восстановлении питания не более 2 с.

Конфигурация устройства сохраняется в энергонезависимой памяти, которая обеспечивает сохранение параметров, при отсутствии напряжения питания, в течение 30 лет.

1.3.6 Каналы дискретного вывода

Технические характеристики каналов дискретного вывода приведены в таблице ниже.

Таблица 2 – Технические характеристики дискретных выходов

Параметр	Значение	
Количество каналов	16	
Максимальное коммутируемое напряжение, В	250	
Коммутационная способность, Вт, не более	30	
Нагрузочная способность по цепям управления, А, не более	1	
Время действия команды ТУ, с	0,1 непрерывно	
Количество срабатываний под нагрузкой, не менее	10 000	

1.3.7 Коммуникационные порты

Интерфейс конфигурирования модуля выполнен в виде порта TRS 3,5 мм, работающего по протоколу RS-232 (скорость работы 2400 бит/с).

Модуль имеет два интерфейсных порта RS-485. Технические характеристики интерфейса RS-485 приведены в таблице ниже.

Таблица 2 – Характеристики интерфейса RS-485

Наименование параметра	Значение
	МЭК 60870-5-101 (slave);
Протоколы передачи данных	Modbus RTU/ASCII (slave)
	асинхронный
OOWAA BODO BOWA	последовательный
Режим передачи	двухсторонний
	полудуплексный
Скорость передачи	2400 — 115 200 бит/с
Контакты	+D (A), -D (B), G (GND)
Максимальная длина линии связи, м	1 200
Количество устройств в сегменте сети	до 32 (до 254 с повторителями)

1.4 Комплектность

Комплект поставки указывается в индивидуальном паспорте устройства.

В стандартный комплект поставки входят:

- модуль;
- паспорт;
- руководство по эксплуатации*

Примечание: * – руководство по эксплуатации поставляется по требованию.

Эксплуатационная документация доступна на сайте: http://www.tpz.ru

1.5 Устройство и работа

После подачи питания производится инициализация модуля. В случае успешной инициализации, индикатор готовности **RDY** светится зеленым цветом (при старте свет стабильный, в процессе работы мигает зеленым цветом с частотой 1 Гц). В случае любой аварийной ситуации в процессе работы модуля, свечение индикатора готовности непрерывное или отсутствует.

Для работы по интерфейсам RS-485 используются протоколы МЭК 870-5-101 или Modbus RTU. Выбор протокола осуществляется при помощи программы «HW TOPAZ(ITDS) Конфигуратор».

1.5.1 Телеуправление

При подаче любой команды ТУ в первую очередь происходит проверка каналов управления модуля, с исключением возможности выдачи управляющего воздействия на исполнительны цепи. При неисправности одного из элементов тракта, загорается индикатор «Е» соответствующего канала и на верхний уровень выдается сообщение о неисправности. В случае, если неисправность не обнаружена, команда управления продолжает выполняться.

Модуль может производить коммутацию реле как в импульсном режиме (при получении команды ТУ, соответствующий канал принимает замкнутое состояние на заданное уставкой время, после чего размыкается), так и с фиксацией (при получении команды ТУ, соответствующий канал переходит в заданное состояние, и остается в нем до получения следующей команды ТУ).

В модуле реализована функция защиты от случайного управляющего воздействия на объект. На внешний клеммник модуля выведен контакт EnRC. В нормальном положении на этот контакт должен быть подан потенциал +24 В, в этом случае телеуправление будет разрешено. Для запрета телеуправления необходимо снять потенциал +24 В с клеммы EnRC.

Индикаторы дискретных выходов **DOn** (где n – номер соответствующего дискретного выхода):

- индикатор светится красным цветом, когда соответствующий дискретный выход имеет состояние "замкнут".

Индикаторы неисправности каналов ТУ **En** (где n – номер соответствующего дискретного выхода):

- индикатор светится красным цветом, когда соответствующий канал ТУ имеет какую-либо неисправность.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения и меры безопасности

К эксплуатации модуля должны допускаться лица, изучившие настоящее руководство по эксплуатации и обладающие базовыми знаниями в области средств вычислительной техники.

Модуль может размещаться вне взрывоопасных зон как на открытом воздухе, так и в помещении. При этом модуль должен быть защищен от прямого воздействия атмосферных осадков. Рабочее положение – вдоль DIN-рейки.

Для нормального охлаждения модуля, а также для удобства монтажа и обслуживания, при монтаже модуля сверху и снизу необходимо предусмотреть свободное пространство не менее 40 мм. Принудительная вентиляция не требуется.

- Производитель не несет ответственность за ущерб, вызванный неправильным монтажом, нарушением правил эксплуатации или использованием оборудования не по назначению.
- Во время монтажа, эксплуатации и технического обслуживания оборудования необходимо соблюдать «Правила технической эксплуатации электроустановок потребителей».
- Монтаж и эксплуатацию оборудования должен проводить квалифицированный персонал, имеющий группу по

- электробезопасности не ниже 3 и аттестованный в установленном порядке на право проведения работ в электроустановках потребителей до 1000 В.
- На лице, проводящем монтаж, лежит ответственность за производство работ в соответствии с настоящим руководством, требованиями безопасности и электромагнитной совместимости.
- В случае возникновения неисправности необходимо отключить питание от модуля, демонтировать и передать его в ремонт производителю.

2.2 Монтаж

Распаковывание модуля следует производить после выдержки упаковки в нормальных условиях не менее двух часов.

При распаковывании следует соблюдать следующий порядок операций:

- открыть коробку;
- из коробки извлечь:
 - вкладыш;
 - комплект монтажный;
 - модуль.
- произвести внешний осмотр модуля:
 - проверить отсутствие видимых внешних повреждений корпуса и внешних разъемов;
 - внутри модуля не должно быть незакрепленных предметов;
 - изоляция не должна иметь трещин, обугливания и других повреждений;
 - маркировка модуля, комплектующих изделий должна легко читаться и не иметь повреждений.

Модуль устанавливается в стойку 19" (монтажный кронштейн высотой 3U) или на монтажную рейку (DIN-профиль 35 мм) в следующей последовательности:

- корпус модуля ставится на рейку, цепляясь верхними выступами;
- корпус опускается вниз относительно верхнего выступа до щелчка.

Для того, чтобы установить модуль на плоской поверхности, например на стене, необходимо подготовить на ее поверхности четыре отверстия под винты М6 в соответствии с расстоянием между отверстиями на устройстве, как показано на рисунке ниже. Затем прикрепить модуль винтами к стене.

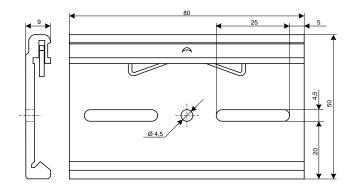


Рисунок 1 – Приспособление для крепления модуля на монтажной рейке

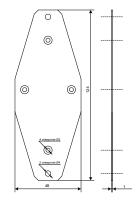


Рисунок 2 – Приспособление для крепления модуля на стене

2.2.1 Подключение питания и разрешения телеуправления

Модуль имеет два независимых канала питания. Подача питания осуществляется через клеммные блоки. Номинальное напряжение питания постоянного тока модуля 24 В.

При наличии напряжения питания на канале питания загорится индикатор **PWn** (где n – номер соответствующего канала). На рисунке ниже приведена схема подключения питания и разрешения телеуправления (EnRC).

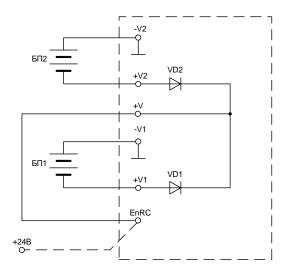


Рисунок 3 - Схема подключения питания

<u>Примечание</u> Подача потенциала +24 В на контакт EnRC осуществляется либо от внешнего источника питания, либо от контакта +V модуля.

2.2.2 Подключения по интерфейсу RS-485

Подключение к шине RS-485 осуществляется через клеммные входы, как показано на рисунке ниже. При передаче данных по интерфейсу RS-485 зеленый светодиодный индикатор **T/R** соответствующего канала активен.

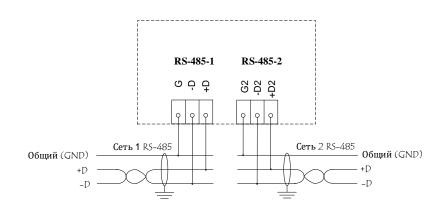


Рисунок 4 – Схема подключения RS-485

2.2.3 Подключение каналов телеуправления

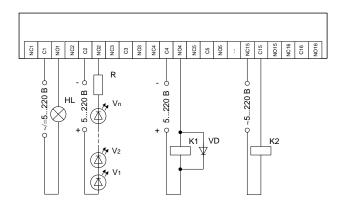


Рисунок 5 – Варианты подключения различных устройств к модулям DOUT

2.3 ПО «НW TOPAZ (ITDS) Конфигуратор»

ПО «НW TOPAZ (ITDS) Конфигуратор» предназначено для настройки микропроцессорных устройств TOPAZ. В данном разделе приведено описание подключения и быстрой настройки устройств TOPAZ на примере модуля TOPAZ TM PM7-W. Экранная форма основного окна программы представлена на рисунке ниже. Подробное описание ПО приведено в PЭ «HW TOPAZ(ITDS) Конфигуратор».

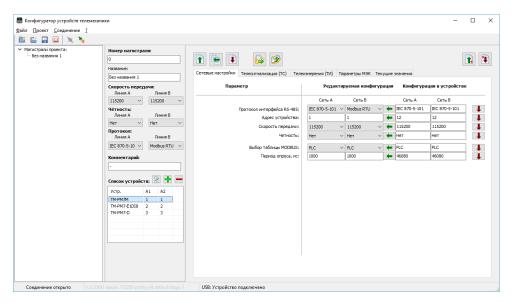


Рисунок 6 – Внешний вид программы «HW TOPAZ (ITDS) Конфигуратор»

Для быстрой настройки модуля через порт USB, необходимо произвести следующие действия:

- 1) подключить модуль к ПК через USB-порт на лицевой стороне модуля;
- 2) запустить программу конфигуратор;
- 3) создать новый проект или открыть существующий (как показано на рисунке ниже);

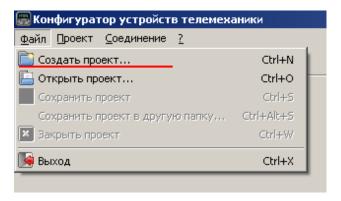


Рисунок 7

4) нажать кнопку над списком устройств в магистрали для добавления нового устройства (как показано на рисунке ниже);

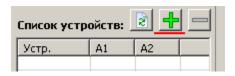


Рисунок 8

5) выбрать интересующее устройство из появившегося списка и нажать кнопку «Добавить»;

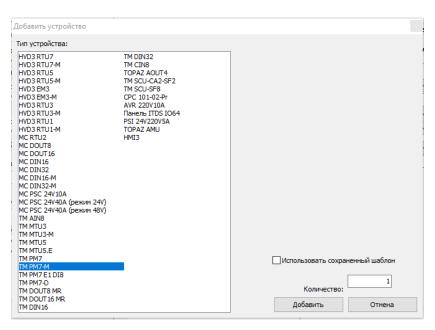


Рисунок 9 – Список типов устройств ТОРАХ

6) выбрать добавленное устройство в списке устройств магистрали;

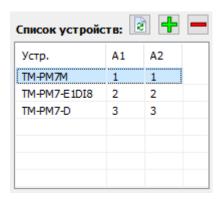


Рисунок 10 – Список устройств магистрали

- 7) если на устройство подано питание, и оно подключено к ПК, то кнопки работы с параметрами устройства (запись/считывание) станут активными;
- 8) убедиться, что тип добавленного устройства соответствует типу подключенного устройства нажатием кнопки (Прочитать все параметры)
- 9) если подключенное устройство соответствует выбранному типу, то в появившемся окне отобразится информация о том, что считывание параметров из устройства было произведено без ошибок, как показано на рисунке ниже;

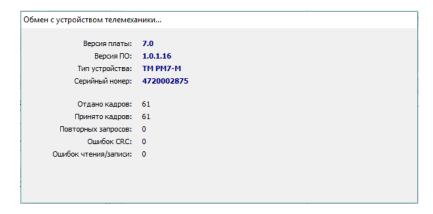


Рисунок 11

10) убедиться, что считанные параметры отобразились в области параметров устройства (вместо прочерка напротив параметров будут отображены их значения из конфигурации устройства, как показано на рисунке ниже;

Рисунок 12.

При подключении модуля через преобразователь RS-485 системой Windows модулю будет назначен виртуальный СОМ-порт.

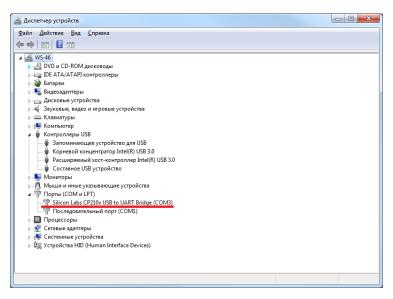


Рисунок 13 – Отображение устройства в диспетчере устройств Windows

<u>Примечание</u> Номер виртуального СОМ-порта присваивается операционной системой автоматически, поэтому на вашем компьютере он может отличаться от указанного в примере.

Для конфигурирования модулей при подключении через преобразователь RS-485, необходимо выбрать вкладку «Соединение/Настройки» основного меню программы и в появившемся окне выбрать соответствующий виртуальный СОМ-порт и параметры соединения такими же, как параметры интерфейса RS-485, к которому подключен преобразователь.

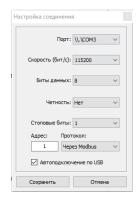


Рисунок 14 — Параметры интерфейсов RS-485 по умолчанию

3 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

Вся обязательная информация по маркировке нанесена на лицевой и боковой панели. Маркировка выполнена способом, обеспечивающим ее сохранность на все время эксплуатации модуля. Перечень информации, содержащейся в маркировке на лицевой панели:

- наименование и условное обозначение;
- назначение светодиодов модуля;
- назначение клеммных соединений и разъемов модуля.
- Перечень информации, содержащейся в маркировке на боковой панели:
- наименование и условное обозначение;
- товарный знак;
- порядковый номер по системе нумерации предприятия-изготовителя;
- дата изготовления;

Для предотвращения несанкционированного доступа к внутренним электрическим элементам корпус модуля должен быть опломбирован путем нанесения саморазрушающейся наклейки.

4 УПАКОВКА

Модули размещается в коробке из гофрированного картона.

Эксплуатационная документация уложена в потребительскую тару вместе с модулем.

В потребительскую тару вложена товаросопроводительная документация, в том числе упаковочный лист, содержащий следующие сведения:

- наименование и условное обозначение;
- дату упаковки;
- подпись лица, ответственного за упаковку.

5 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание модуля заключается в профилактических осмотрах.

При профилактическом осмотре должны быть выполнены следующие работы:

- проверка обрыва или повреждения изоляции проводов и кабелей;
- проверка надежности присоединения проводов и кабелей;
- проверка отсутствия видимых механических повреждений, а также пыли и грязи на корпусе модуля.

Периодичность профилактических осмотров модуля устанавливается потребителем, но не реже 1 раз в год.

Эксплуатация модуля с повреждениями категорически запрещается.

6 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Транспортирование модулей должно производиться в упаковке предприятия-изготовителя любым видом транспорта, защищающим от влияний окружающей среды, в том числе авиационным в отапливаемых герметизированных отсеках самолетов.

Размещение и крепление в транспортных средствах упакованных модулей должно обеспечивать его устойчивое положение, исключать возможность ударов друг о друга, а также о стенки транспортных средств.

Укладывать упакованные модули в штабели следует с правилами и нормами, действующими на соответствующем виде транспорта, чтобы не допускать деформации транспортной тары при возможных механических перегрузках.

При погрузке и выгрузке запрещается бросать и кантовать модули.

После продолжительного транспортирования при отрицательных температурах приступать к вскрытию упаковки не ранее 12 часов после размещения модулей в отапливаемом помещении.

Модули следует хранить в невскрытой упаковке предприятия-изготовителя на стеллаже в сухом отапливаемом и вентилируемом помещении, при этом в атмосфере помещения должны отсутствовать пары агрессивных жидкостей и агрессивные газы.

Средний срок сохранности в потребительской таре в отапливаемом помещении, без консервации - не менее 2 лет.

нормальные климатические факторы хранения:

- температура хранения +20 ± 5 $^{\circ}$ C;
- значение относительной влажности воздуха: 30-80 %.

Предельные климатические факторы хранения:

- температура хранения от -40 до +70 $^{\circ}$ C;
- значение относительной влажности воздуха: верхнее 100% при 30°C.

7 УТИЛИЗАЦИЯ

Модули не представляют опасности для жизни, здоровья людей и окружающей среды. Модули не содержат драгоценных и редкоземельных металлов.

После окончания срока службы, специальных мер по подготовке и отправке модулей на утилизацию не предусматривается.

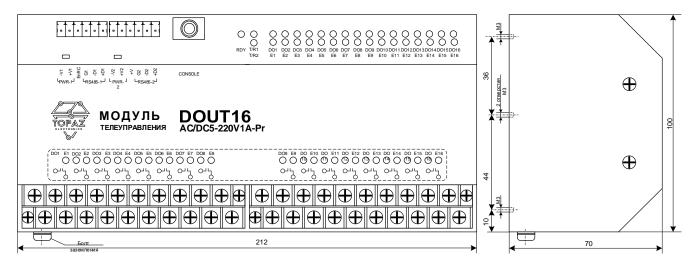


Рисунок А.1 – Габаритные размеры модуля TOPAZ MC DOUT16 AC/DC5-220V1A-Pr

Таблица А.1 – Назначение индикаторов модуля

Обозначение	Назначение	
Индикаторы		
PW1	Индикатор наличия питания канала 1	
PW2	Индикатор наличия питания канала 2	
RDY	Индикатор готовности	
T/R1	Индикатор передачи информации по интерфейсам связи RS-485-1	
T/R2	Индикатор передачи информации по интерфейсам связи RS-485-2	
DOn	Индикатор состояния канала ТУ, где n – номер канала	
En	Индикатор неисправности канала ТУ, где n – номер канала	

Таблица А.2 – Назначение клемм и портов модуля

Обозначение	Назначение			
CONSOLE	Порт конфигурирования			
+V	Выход +24 В			
EnRC	Разрешение телеуправления (+24В)			
Канал питания 1 (PWR-1)				
+V1	Вход от источника питания постоянного тока (+24В)			
-V1	Вход от источника питания постоянного тока (-24В)			
Канал питания 2 (PWR-2)				
+V2	Вход от источника питания постоянного тока (+24В)			
-V2	Вход от источника питания постоянного тока (-24В)			
	Канал 1 интерфейса RS-485 (RS485-1)			
G1	Интерфейс RS-485 (GND)			
+D1	Интерфейс RS-485 (+D)			
-D1	Интерфейс RS-485 (–D)			
Канал 2 интерфейса RS-485 (RS485-2)				
G2	Интерфейс RS-485 (GND)			
+D2	Интерфейс RS-485 (+D)			
-D2	Интерфейс RS-485 (–D)			
Каналы телеуправления (ТУ)				
DOn	Клеммы канала дискретного вывода, где n — номер канала			