

СЕРВЕР ДОСТУПА К ДАННЫМ (КОНТРОЛЛЕР) TOPAZ IEC DAS MX240

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

ПЛСТ.421457.100 РЭ

Москва 2019

ОГЛАВЛЕНИЕ

1		OI	ПИС	АНИЕ И РАБОТА	4
	1.1	1	Наз	начение изделия	4
	1.2	2	Мод	дификации и условные обозначения	4
	1.3	3	Техн	нические характеристики	6
		1.3	.1	Конструкция	6
		1.3	.2	Рабочие условия эксплуатации	6
		1.3	.3	Безопасность и электромагнитная совместимость	6
		1.3	.4	Надежность	7
		1.3	.5	Питание	7
		1.3	.6	Характеристики контроллера	7
		1.3	.1	Синхронизация времени	8
		1.3	.2	Коммуникационные возможности	8
		1.3	.3	Каналы дискретного ввода-вывода1	1
	1.4	4	Ком	плектность1	1
	1.5	5	Устр	оойство и работа1	2
	1.6	6	Кон	фигурирование с помощью командной строки1	3
		1.6	.1	Подключение через серийную консоль1	4
		1.6	.2	Подключение через порт Ethernet по протоколу SSH1	5
	1.7	7	Web	o-интерфейс1	5
		1.7	.1	Подключение к web-интерфейсу1	5
		1.7	.2	Работа с web-интерфейсом1	6
2		M	АРК	ИРОВКА И ПЛОМБИРОВАНИЕ2	8
3		УГ	1AK(DBKA2	9
4		TE	ХΗν	1ЧЕСКОЕ ОБСЛУЖИВАНИЕ2	9
5		TP	AHC	СПОРТИРОВАНИЕ И ХРАНЕНИЕ2	9
6		УТ	или	3	0
7		И	спо.	ЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ3	0
	7.1	1	Эксі	ллуатационные ограничения и меры безопасности3	0
	7.2	2	Мон	нтаж3	0
		7.2	.1	Подготовка к монтажу	0
		7.2	.2	Установка на DIN-рейку3	1
		7.2	.3	Внешние подключения	1
		7.2	.4	Шина T-BUS	1
		7.2	.5	Подключение питания	3
		7.2	.6	Подключение к сети Ethernet	4
		7.2	.7	Подключение к сетям последовательной передачи	6

ООО «ПиЭлСи Технолоджи»

	7.2.8	Подключение каналов дискретного ввода-вывода	38
	7.2.9	Подключение SIM-карт (при наличии GSM модема)	39
	7.2.10	Подключение интерфейса человек-машина	39
ПРИ	1ЛОЖЕН	НИЕ А	40
ПРΙ	1ЛОЖЕН	НИЕ Б.	47

Настоящее руководство по эксплуатации (РЭ) предназначено для ознакомления со сведениями о конструкции, принципе действия, технических характеристиках сервера доступа к данным **TOPAZ IEC DAS MX240** (далее по тексту — устройство), его составных частях, указания, необходимые для правильной и безопасной эксплуатации, технического обслуживания, ремонта, хранения и транспортирования, а также схемы подключения устройства к цепям питания, телемеханики и передачи данных.

Перед началом работы с устройством необходимо ознакомиться с настоящим РЭ.

РЭ предназначено для эксплуатационного персонала и инженеров-проектировщиков АСУ ТП, систем телемеханики и диспетчеризации.

В СВЯЗИ С ПОСТОЯННОЙ РАБОТОЙ ПО СОВЕРШЕНСТВОВАНИЮ ИЗДЕЛИЯ, В КОНСТРУКЦИЮ И ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ МОГУТ БЫТЬ ВНЕСЕНЫ ИЗМЕНЕНИЯ, НЕ УХУДШАЮЩИЕ ЕГО ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И НЕ ОТРАЖЕННЫЕ В НАСТОЯЩЕМ ДОКУМЕНТЕ.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение изделия

Устройство является свободно программируемым контроллером, предназначенным для решения задач автоматизации, телемеханики и диспетчеризации.

Устройство используется для мониторинга и управления инженерным оборудованием различных объектов:

- жилищно-коммунального и городского хозяйства: котельных, насосных станций, тепловых пунктов, а также инженерных систем «умный дом»;
- энергетики, в том числе цифровых подстанций;
- промышленности и сельского хозяйства.

1.2 Модификации и условные обозначения

Функциональные возможности устройства, количество и тип интерфейсов передачи данных определяются типом базовой платы и количеством/типом плат расширений.

Количество и тип интерфейсов передачи данных устройства, а также наличие дополнительных функциональных возможностей зависят от конкретной модификации и отражены в расшифровке названия (заказной кодировке), согласно таблице 1.

Таблица 1 – Расшифровка кода заказа устройства

TOPAZ IEC DAS MX240 A [B]/[C]/[D]/[E]/[F1Fx] ([G1Gx]-[H1Hx]) I					
Позиция	Код	Описание			
	Тип основного устройства				
		Общее количество портов устройства, где «хх» - суммарное			
Α	ExxRyy	количество портов Ethernet, «уу» - суммарное количество			
		портов последовательной передачи данных			
	Дополнительные функции				
	GSM	GSM модем на 2 mini-SIM-карты			
В	GSM-LTE	GSM/LTE модем на 2 mini-SIM-карты			
Б	GSM(SC)	GSM модем с 2 встроенными SIM-chip			
	GSM-LTE(SC)	GSM/LTE модем с 2 встроенными SIM-chip			
С PTS Приемник сигналов точного времени (ГЛОНАСС/GPS)					

D	D DIOn Универсальные каналы дискретного ввода-вывода, где «n» - количество каналов. Шаг наращивания — 4.						
_ SSDm		SSD накопители, где «m» – суммарный объем ПЗУ накопителей					
E	SSDmT	SSD в Гб (Тб)					
Панель оператора							
	nHDMI	Порт НДМІ					
	nUSB	Порты USB					
F1Fx	nDB9	Порт DB9					
	HMI7	человеко-машинный интерфейс TOPAZ HMI7					
	HMI15	Сенсорный монитор TOPAZ HMI15					
		Коммуникационные порты Ethernet					
	nGSFP	Ethernet 1000 Мбит/с SFP ¹⁾					
	nGTXSFP	Ethernet 1000 Мбит/с combo-port RJ-45/SFP ¹⁾					
	nGTx	Ethernet 1000 Мбит/с ТХ RJ-45					
G1Gx	nTx	Ethernet 100 Мбит/с ТХ RJ-45					
G1GX	nFxS	Ethernet 100 Мбит/с FX LC single-mode					
	nFxM	Ethernet 100 Мбит/с FX LC multi-mode					
	«n» – количество портов Ethernet соответствующего типа, максимальное						
	суммарное количество портов Ethernet – 32.						
	Коммуникаци	онные порты последовательной передачи данных					
	nR	RS-485 клеммный вход					
	nRS232	RS-232 клеммный вход					
	nRS422	RS-422 клеммный вход					
H1Hx	nRS485Fo	RS-485 оптический ST-разъем					
112 11X	nRS232Fo	RS-232 оптический ST-разъем					
		о портов последовательной передачи данных соответствующего					
	*	ьное суммарное количество портов последовательной передачи					
	данных – 16.						
		Исполнение по питанию					
.	-	Два входа питания 24B DC					
	HV	Вход питания 220B DC/AC					
4) 055	2HV	Два входа питания 220B DC/AC					
1) SFP-модули заказываются дополнительно:							
TOPAZ SFP-100-01-MM – 100 мегабитный многомодовый SFP-модуль							
TOPAZ SFP-100-01-SM — 100 мегабитный одномодовый SFP-модуль TOPAZ SFP-1G-10-SM — гигабитный одномодовый SFP-модуль, дальность передачи 10 км							
		- тигаоитный одномодовый SFP-модуль, дальность передачи 10 км - гигабитный одномодовый SFP-модуль, дальность передачи 15 км					
		- гигабитный одномодовый SFP-модуль, дальность передачи 13 км - гигабитный одномодовый SFP-модуль, дальность передачи 40 км					
		– гигабитный многомодовый SFP-модуль, дальность передачи 1 км					
		– гигабитный многомодовый SFP-модуль, дальность передачи 2 км					
11 19 71 130							

Пример записи обозначения устройства **TOPAZ IEC DAS MX240** при заказе:

с двумя Ethernet 100 Мбит/с FX LC single-mode, четырьмя портами RS-485, двумя входами питания 220 В:

«Сервер доступа к данным TOPAZ IEC DAS MX240 E2R4 (2FxS-4R) 2HV».

с двумя Ethernet 1000 Мбит/с ТХ RJ-45, двумя Ethernet 100 Мбит/с FX LC multi-mode, шестью портами RS-485, GSM модемом, 4 каналами дискретного ввода/вывода, SSD накопителем на 128 Гб, сенсорным монитором HMI15, двумя входами питания 24 В:

«Сервер доступа к данным TOPAZ IEC DAS MX240 E4R6 GSM/DIO4/SSD128/HMI15 (2GTx-2FxM-6R)».

с двумя Ethernet 1000 Мбит/с combo-port RJ-45/SFP, двумя Ethernet 100 Мбит/с ТХ RJ-45, двумя Ethernet 100 Мбит/с FX LC multi-mode, двумя портами RS-232, LTE модемом, приемником сигналов точного времени, 4 каналами дискретного ввода/вывода, SSD накопителем на 32 Гб, сенсорным монитором HMI15, двумя входами питания 24 В:

«Сервер доступа к данным TOPAZ IEC DAS MX240 E6R2 GSM-LTE/PTS/DIO4/SSD32/HMI15 (2GTXSFP-2Tx-2FxM-2RS232)».

1.3 Технические характеристики

1.3.1 Конструкция

Конструктивно устройство выполнено в пластиковом корпусе, не поддерживающем горение с креплением для установки на DIN-рейку. Вентиляционные отверстия корпуса расположены сверху и снизу корпуса. Степень защиты от проникновения внутрь твердых частиц, пыли и воды — не ниже IP20 по ГОСТ 14254-2015. По устойчивости к механическим воздействиям, устройство относится к классу М40 по ГОСТ 30631-99. Габаритные размеры устройства (ШВГ) не более 180х108,5х124 мм. Масса устройства не более 1 кг.

Внешний вид, описание входов, выходов и индикаторов устройства приведены в приложении А настоящего руководства.

1.3.2 Рабочие условия эксплуатации

По рабочим условиям эксплуатации (климатическим воздействиям) устройство соответствует изделиям группы С2 по ГОСТ Р 52931-2008. По устойчивости к воздействию атмосферного давления устройство соответствует группе Р2 по ГОСТ Р 52931-2008.

Таблица 2 – Рабочие условия эксплуатации
Параметр

Параметр	Значение
Температура окружающего воздуха, ⁰ С	от -40 до +70
Относительная влажность воздуха при температуре 30 °C и ниже, %	до 100
Атмосферное давление воздуха, кПа	60 ÷ 106,7

1.3.3 Безопасность и электромагнитная совместимость

По устойчивости к электромагнитным помехам устройство соответствует ГОСТ Р 51318.11-2006 для класса А группы 1, и ГОСТ Р 51317.6.5-2006 для оборудования, применяемого на электростанциях и подстанциях.

Радиопомехи не превышают значений, установленных для класса А по ГОСТ 30805.22-2013, для класса А по ГОСТ 30804.3.2-2013.

Устройство, в части защиты от поражения электрическим током, соответствует требованиям ГОСТ 12.2.091-2012. Класс защиты от поражения электрическим током I по ГОСТ 12.2.007.0-75.

Электрическое сопротивление изоляции устройства не менее 2,5 МОм. Электрическая прочность изоляции устройства выдерживает без разрушения испытательное напряжение 2500 В, 50 Гц в течение 1 мин.

Устройство соответствует требованиям технических регламентов Таможенного союза ТР ТС 004/2011 «О безопасности низковольтного оборудования», ТР ТС 020/2011 «Электромагнитная совместимость технических средств».

1.3.4 Надежность

Устройство является восстанавливаемым, ремонтируемым изделием, предназначенным для круглосуточной эксплуатации в стационарных условиях в производственных помещениях. Режим работы устройства непрерывный. Продолжительность непрерывной работы не ограничена. Норма средней наработки на отказ в нормальных условиях применения составляет 140 000 ч. Полный средний срок службы составляет 30 лет. Среднее время восстановления работоспособности на объекте эксплуатации (без учета времени прибытия персонала и при наличии ЗИП) не более 30 минут.

1.3.5 Питание

Количество и тип каналов питания устройства зависят от исполнения по питанию. Характеристики каналов питания приведены в таблице ниже.

Таблица	3 – Xa	ракте	ристики	питания
---------	--------	-------	---------	---------

Наименование параметра	3начение			
Количество каналов питания	до 2			
Номинальное напряжение питания, В:				
- канал 24 В	10÷30 (DC)			
- канал 220 В	90 ÷ 265 (AC); 100 ÷ 365 (DC)			
Частотный диапазон напряжения питания 220 В, Гц	45 ÷ 55			
Ток потребления канала питания 220 В, не более, А	0,4			
Потребляемая мощность плат устройства, не более, Вт	10			

Кратковременные перерывы питания (до 200 мс) не влияют на работу устройства. При нарушении питания на время более 200 мс, устройство корректно завершает свою работу, а при восстановлении напряжения питания устройство переходит в рабочий режим автоматически. Под корректным завершением работы в данном случае понимается отсутствие ложного формирования команд ТУ, передачи ложной информации и потери конфигурационной информации. Устройство обеспечивает нормальную работу при произвольном изменении напряжения питания в пределах рабочего диапазона. Время установления рабочего режима при восстановлении питания не более 10 с.

Конфигурация устройства сохраняется в энергонезависимой памяти, которая обеспечивает сохранение параметров, при отсутствии напряжения питания, в течение 30 лет.

1.3.6 Характеристики контроллера

Технические характеристики основного контроллера приведены в таблице ниже.

Таблица 4 – Характеристики контроллера

Наименование параметра	Значение		
Характеристики контроллера			
Операционная система	Linux		
Слот для Flash-карты	microSD		
Процессор	ARM Cortex-A8		
Частота, МГц	до 1000		
Память ОЗУ, Гб	0,5 (DDR3L)		

Наименование параметра	Значение
Память ПЗУ, Гб	4 (eMMC)

1.3.1 Синхронизация времени

Характеристики синхронизации времени приведены в таблице ниже.

Таблица 5 – Характеристики синхронизации времени

Наименование параметра	Значение
Уход локальных часов без внешнего питания, с / сутки, не более	± 1
Уход локальных часов при отсутствии синхронизации по сигналам точного времени, с / сутки, не более	± 0,5
Точность синхронизации времени:	
 по протоколам ГОСТ Р МЭК 60870-5-101/104 	±2 mc
- по протоколам NTP, SNTP	±100 мкс
- по протоколу РТР	±1 MKC

1.3.1.1 Приемник сигналов точного времени

Наличие приемника сигналов точного времени указано в заказной кодировке устройства. Технические характеристики приемника сигналов точного времени ГЛОНАСС/GPS приведены в таблице ниже.

Таблица 6 – Технические характеристики приемника сигналов точного времени

Наименование парамо	Значение	
The same of the sa	каналы сопровождения	33
Приемник ГЛОНАСС/GPS	каналы захвата	99
Тип генератора	TCXO	
Разъем для антенны	SMA	
Точность синхронизации времени по сигналам	±200 нс	

1.3.2 Коммуникационные возможности

1.3.2.1 Интерфейсы Ethernet

Количество и тип каналов Ethernet указаны в заказной кодировке устройства. Технические характеристики интерфейса Ethernet приведены в таблице ниже.

Таблица 7 – Технические характеристики интерфейса Ethernet

Заказное обозначение	Тип разъема	Скорость передачи данных
nGSFP	SFP-корзина	
nGTx	порт RJ-45	10/100/1000
nGTXSFP	комбо-порт RJ-45/SFP	
nTx	порт RJ-45	
nFxS	порт LC (одномодовое оптоволокно)	10/100
nFxM	порт LC (многомодовое оптоволокно)	

Таблица 8 – Технические характеристики оптических каналов связи Ethernet

Наименование параметра		Одномодовое оптоволокно	Многомодовое оптоволокно
Сечение		9/125 мкм	50/125 мкм;
			62,5/125 мкм
Пальность породани им	порт LC	15	2
Дальность передачи, км	SFP-модуль	до 40	до 4
Длина волны, нм		1310	1310
Мощность передатчика, дБм		от -20 до 0	от -23,5 до -14
Чувствительность приемника, дБм		до -32	до -31

<u>Примечание</u> Комбо-порт GTXSFP работает в режиме автоматического переключения. При одновременном подключении ко входу RJ-45 и SFP, активен только вход SFP.

<u>Примечание</u> Скорость передачи данных порта SFP соответствует скорости передачи данных SFP-модуля

Таблица 9 – Поддерживаемые технологии Ethernet

Технологии	Описание
Поддерживаемые стандарты	IEEE 802.3 10BaseT;
	IEEE 802.3u 100BASE-TX, 100BASE-FX;
	IEEE 802.3z 1000BASE-X;
	IEEE 802.3ab 1000BASE-T;
	IEEE 802.3x управление потоком;
	IEEE 802.3az Ethernet с энергосберегающим режимом
	IEEE 802.1D-2004 STP, QoS;
	IEEE 802.1d STP;
	IEEE 802.1w RSTP;
	IEEE 802.1Q тегирование трафика.
Промышленные протоколы	Ethernet/IP; FOCT P MЭK 60870-5-104; Modbus/TCP;
	IEC 61850
Управление	SSH; Console – CLI; Web.
Протоколы фильтрации трафика	VLAN на основе портов
Протоколы резервирования сети	STP/RSTP; PRP; HSR
Информационная безопасность	Authentication Certificate - SSL Certificate/SSH Key
	Regenerate; 802.1X – Port Based; Port Security – Static
	MAC Port Lock.
Протоколы синхронизации времени	ГОСТ Р МЭК 60870-5-104; NTP Server/Client; IEEE
	1588v2 (PTP v2)

1.3.2.2 Интерфейсы последовательной передачи данных

Количество и тип каналов последовательной передачи данных указаны в заказной кодировке устройства. Технические характеристики последовательных интерфейсов приведены в таблице ниже.

Таблица 10 – Технические характеристики последовательных интерфейсов

Наименование параметра	Значение	
	ГОСТ Р МЭК 60870-5-101 (master/slave),	
Протоколы передачи данных	ГОСТ Р МЭК 60870-5-103 (master),	
	Modbus RTU/ASCII (slave), SPA-Bus (master)	
	асинхронный	
Режим передачи	последовательный	
гежим передачи	двухсторонний	
	полудуплексный	
Cyonocti Bono Bolla	2400 — 115 200 бит/с	
Скорость передачи	(по заказу до 4 Мбит/с)	
Интерфейс	RS-485	
Тип разъема	клеммный вход	
Контакты	+D (A), -D (B), G (GND)	
Максимальная длина линии связи, м	1 200	
Количество устройств в сегменте сети	до 32 (до 254 с повторителями)	
Интерфейс RS-232		
Тип разъема	клеммный вход	
Контакты	Tx, Rx, G	
Максимальная длина линии связи, м	15	
Количество устройств в сегменте сети	2	
Интерфейс RS-422		
Тип разъема	клеммный вход	
Контакты	-TX, +TX, -RX, +RX	
Максимальная длина линии связи, м	1 200	
Количество устройств в сегменте сети	1 в режиме master, до 10 в режиме slave	

1.3.2.3 Порты расширения

Наличие и тип портов расширения указаны в заказной кодировке устройства. Технические характеристики портов приведены в таблице ниже.

Таблица 11 – Технические характеристики портов расширения

Наименование параметра	Значение		
Порт НДМІ			
Тип разъема	Тип А		
Порт USB			
Тип разъема	USB		
Поддержка спецификации	USB 2.0		
Порт DB9			
Тип разъема	порт DB9 (папа)		
Контакты	TxD, RxD, RTS, CTS, DTR, DSR, DCD, GND, RI		
Максимальная длина линии связи, м	15		

1.3.2.4 GSM модем

Наличие и тип модема указаны в заказной кодировке устройства. Технические характеристики GSM модема приведены в таблице ниже.

Таблица 12 – Технические характеристики модема

Наименование параметра		Значение
Количество SIM-карт		2
Формат SIM-карты		mini-SIM или SIM-chip
Разъём для антенны		SMA
	GSM, EDGE	850/900/1800/1900
Диапазоны частот, МГц	UMTS	800/850/900/1900/2100
	LTE FDD	800/850/900/1800/2100/2600
	GSM 850/900	Class 4 (33дБм±2дБ)
	GSM 1800/1900	Class 1 (30дБм ±2дБ)
Pulyo guad Moullocti	EDGE 850/900	Class E2 (27дБм ±3дБ)
Выходная мощность	EDGE 1800/1900	Class E2 (26дБм +3/-4дБ)
	UMTS	Class 3 (24дБм+1/-3дБ)
	LTE FDD	Class 3 (23дБм±2дБ)
GSM модем		
Поддерживаемые стандарты передачи данных		CSD, GPRS, EDGE, UMTS, HSDPA, HSUPA
Количество антенн		1
GSM/LTE модем		
Поддерживаемые стандарты передачи данных		CSD, GPRS, EDGE, UMTS, HSPDA, HSUPA,
		HSPA+, DC-HSPA+, LTE
Количество антенн		до 2 (поддержка МІМО)

1.3.3 Каналы дискретного ввода-вывода

Количество каналов дискретного ввода-вывода указано в заказной кодировке устройства. Технические характеристики каналов дискретного ввода-вывода приведены в таблице ниже.

Таблица 13 – Технические характеристики каналов дискретного ввода-вывода

Наименование параметра	Значение
Режим работы	дискретный ввод;
Гежим рассты	дискретный вывод
Напряжение встроенного источника питания, В	10,2 ÷ 13,8
Максимальный ток встроенного источника питания, мА	200
Ток потребления на каждом канале, мА	3
Сопротивление токоограничивающего резистора, кОм	4

1.4 Комплектность

Комплект поставки указывается в индивидуальном паспорте устройства.

В стандартный комплект поставки входят:

- 1) устройство TOPAZ IEC DAS MX240;
- 2) паспорт;
- 3) штекер MC 1,5/5-ST-3,81;
- 4) шинные соединители ME 22.5 TBUS 1.5/5-ST-3,81;*
- 5) разъем MSTBT 2,5/4-ST.*

Примечание: * — количество шинных соединителей и клеммных блоков согласно индивидуальному паспорту устройства;

Эксплуатационная документация доступна на сайте: http://www.tpz.ru

1.5 Устройство и работа

После подачи питания производится инициализация устройства. В случае успешной инициализации, индикатор готовности **RDY** светится зеленым цветом (при старте свет стабильный, в процессе работы мигает зеленым цветом с частотой 1 Гц). В случае любой аварийной ситуации в процессе работы устройства, свечение индикатора готовности непрерывное или отсутствует.

Настройка, управление и контроль работы устройства осуществляется с использованием персонального компьютера, подключаемого через сеть Ethernet, либо через консоль (виртуальный СОМ-порт).

Устройство работает под управлением операционной системы Linux и реализует следующие базовые функции:

- прием информации по цифровым каналам связи;
- автоматическое накопление, хранение и передача информации по цифровым каналам связи;
- ведение системного времени и его автоматическая коррекция/синхронизация по сигналам точного времени.
- самодиагностика и тестирование работоспособности первичных преобразователей (датчиков);
- ведение журнала событий.
- синхронизации собственных часов от внешней сети по протоколам РТР, NTP и SNTP;
- синхронизации времени подконтрольных устройств;

В зависимости от типа установленных плат, устройство также может выполнять функции:

- контроля состояния дискретных входов (телесигнализация);
- управления дискретными выходами (телеуправление);
- передачи данных по GPRS сети;
- синхронизации собственных часов с помощью сигналов спутниковых навигационных систем (ГЛОНАСС/GPS).

В режиме «информационного шторма» устройство поддерживает одновременное соединение с 50 внешними устройствами по протоколу МЭК 61850.

В «Журнале событий» устройства автоматически фиксируются время и даты наступления следующих событий:

- ввода расчетных коэффициентов измерительных каналов;
- попыток несанкционированного доступа;
- фактов изменения данных;
- перезапусков устройства;
- фактов корректировки времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство;
- результатов самодиагностики;
- отключения питания.

На лицевой стороне устройства расположены кнопки **RS** и **RB** (нажатие осуществляется заостренным предметом).

Кнопка **RS** предназначена для перезагрузки устройства без отключения питания.

Кнопка **RB** предназначена для сброса устройства на заводские настройки. Для этого необходимо вставить технологическую microSD-карту, и нажать кнопку **RB**. Данное действие приведет к перезагрузке устройства и перехода в режим восстановления. Сброс устройства на заводские настройки может осуществляться только эксплуатирующим персоналом или заводомизготовителем.

ВНИМАНИЕ! ПРИ СБРОСЕ УСТРОЙСТВА НА ЗАВОДСКИЕ НАСТРОЙКИ ВСЕ ТЕКУЩИЕ ДАННЫЕ И НАСТРОЙКИ БУДУТ УТЕРЯНЫ.

1.6 Конфигурирование с помощью командной строки

Конфигурирование устройства с помощью командной строки возможно через серийную консоль (порт USB на лицевой стороне устройства) либо через порт Ethernet по протоколу ssh.

Таблица 14 – Варианты доступа к настройкам устройства

Протокол	Описание	Требуемое ПО
SSH	Защищенный протокол передачи данных. Аналог протокола Telnet с шифрованием трафика при авторизации и работе с консолью.	UNIX — утилита ssh (стандартный SSH-клиент UNIX); Windows — PuTTY, WinSCP, openssh.
Серийная консоль	Подключение через консольный USB-порт устройства (virtual COM-port).	UNIX — утилита minicom; Windows XP — HyperTerminal (встроенное ПО); Windows 7, 8, 10 — PuTTY или аналог.

Конфигурирование устройства через SSH-соединение или серийную консоль можно осуществлять с помощью одной из терминальных программ. В приложении Б настоящего РЭ приведен пример подключения к устройству с помощью одной из таких программ.

ВНИМАНИЕ! ПРИ КОНФИГУРИРОВАНИИ УСТРОЙСТВА РЕКОМЕНДУЕТСЯ УДЕЛИТЬ ОСОБОЕ ВНИМАНИЕ НАСТРОЙКАМ ДОСТУПА ПО ПРОТОКОЛУ SSH. ОТ СЛОЖНОСТИ ПАРОЛЕЙ, РАЗРЕШЕНИЯ УДАЛЕННОГО ДОСТУПА, ИСПОЛЬЗУЕМЫХ ПОРТОВ СЕТЕВЫХ СЛУЖБ, НАСТРОЕК МЕЖСЕТЕВОГО ЭКРАНА И ДРУГИХ НАСТРОЕК СЕТЕВЫХ СЛУЖБ ЗАВИСИТ БЕЗОПАСНОСТЬ УСТРОЙСТВА И ПОДКЛЮЧЕННЫХ К НЕМУ УСТРОЙСТВ.

Логин и пароль при заводских настройках следующие:

Логин (Login): **root** Пароль (Password): **root**


```
COM5 - PuTTY
                                               Х
topaz login: root
Password:
####### ######
                   ########
                                       #######
         ##
   ##
               ## ##
                          ##
   ##
         ##
                ## ##
                          ##
   ##
         ##
                ## #######
   ##
         ##
                ## ##
                             #########
                ## ##
                             ##
   ##
         ##
                                    ##
                                        ##
         #######
                   ##
                             ##
                                    ##
                                       #######
Topaz Linux 4.1.18, http://tpz.ru
based on Arago 2016.03
root@topaz:~#
```

Рисунок 1 – Экран приветствия командной строки

1.6.1 Подключение через серийную консоль

При подключении устройства через консольный порт (USB) в системе появится виртуальный последовательный СОМ-порт, который можно использовать для соединения персонального компьютера с устройством. Для того, чтобы узнать номер порта, перейдите в «Диспетчер устройств» Windows и откройте вкладку «Порты». После чего, убедившись, что на устройство подано питание, соедините устройство с компьютером. Во вкладке «Порты» появится новый последовательный порт.

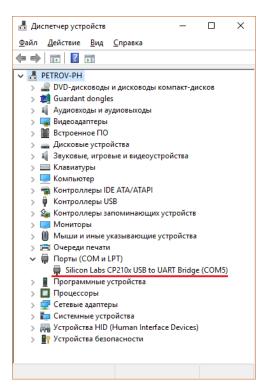


Рисунок 2 – Отображение устройства в диспетчере устройств Windows

<u>Примечание</u> Номер виртуального СОМ-порта присваивается операционной системой автоматически, поэтому на вашем компьютере он может отличаться от указанного в примере.

Последовательный порт консоли предоставляет пользователю удобный способ подключения к устройству, особенно при первом подключении и настройке устройства. Связь осуществляется по прямому последовательному соединению и пользователю не нужно знать IP адреса Ethernet-портов для того, чтобы подключиться к устройству.

Параметры передачи данных по виртуальному СОМ-порту приведены в таблице ниже.

Таблица 15 – Параметры соединения с устройством по виртуальному СОМ-порту

Параметр	Значение
Скорость передачи / Baudrate	115 200 bps
Биты данных / Parity None Data bits	8
Стоповые биты / Stop bits	1
Контроль четности / Parity	None
Управление потоком / Flow Control	None

1.6.2 Подключение через порт Ethernet по протоколу SSH

При подключении устройства к персональному компьютеру через Ethernet используются следующие настройки LAN:

порт LAN#1 192.168.3.127 порт LAN#2 192.168.4.127 макса подсети: 255.255.255.0

1.7 Web-интерфейс

1.7.1 Подключение к web-интерфейсу

Управление через web-интерфейс возможно через любой стандартный интернет-браузер, поддерживающий HTTP 1.0. Например, Opera, Firefox, IE или Chrome.

Для входа в web-интерфейс выполните следующие действия:

- подключите компьютер с помощью Ethernet-кабеля к разъему Ethernet устройства;
- откройте интернет-браузер;
- наберите в адресной строке интернет-браузера адрес устройства (по умолчанию **192.168.3.127** для порта LAN1).

При отсутствии неполадок, в окне интернет-браузера появится запрос авторизации (рисунок 3). Введите логин и пароль (по умолчанию: логин — **admin**, пароль — **admin**) и нажмите кнопку «ВОЙТИ» или клавишу «Enter».

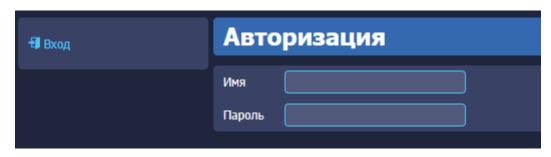


Рисунок 3 — Окно авторизации для доступа к web-интерфейсу

<u>Примечание</u> Компьютер и устройство должны находиться в одной подсети (адрес подсети устройства по умолчанию **255.255.255.0**). Адрес компьютера в подсети должен отличаться от адреса устройства, например **192.168.3.2**.

После корректно ввода логина и пароля открывается доступ к основному интерфейсу управления устройством (рисунок 4).

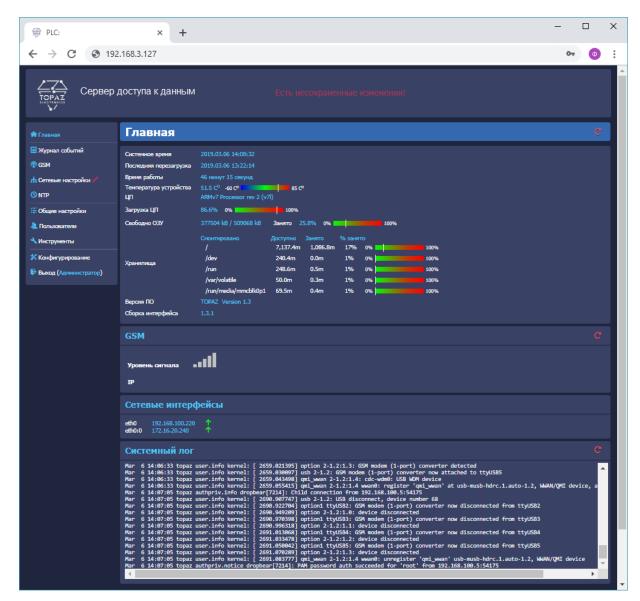


Рисунок 4 — Основное окно web-интерфейса (раздел «Главная»)

1.7.2 Работа с web-интерфейсом

Навигация по разделам web-интерфейса осуществляется через главное меню, расположенное в левой части окна web-браузера.

При переходе в раздел, происходит загрузка текущих данных и параметров данного раздела. В правом верхнем углу каждой области раздела расположена кнопка . Нажатие на данную иконку производит обновление текущих данных соответствующей области.

Для того, чтобы редактируемые изменения настроек текущего раздела вступили в силу, необходимо нажать кнопку Сохранить. Для того, что бы отменить текущие несохраненные изменения, следует нажать кнопку Вернуть прежние. При наличии несохраненных настроек, в

верхней части экрана загорится надпись: «Есть несохраненные изменения!», а напротив раздела с измененными, но не сохраненными, настройками будет отображена иконка

При работе со списками для добавления нового элемента списка следует нажать на кнопку **№** Для удаления элемента списка следует нажать кнопку напротив интересующего элемента списка.

1.7.2.1 Раздел «Главная»

В данном разделе выводится общая информация об устройстве.

Таблица 16 - Поля раздела «Главная»

Название	Описание
Системное время	Текущие дата и время устройства согласно UTC
Последняя перезагрузка	Дата и время последней перезагрузки согласно UTC
Время работы	Время работы устройства (дней)
Температура устройства	Температура внутри корпуса устройства
цп	Модель центрального процессора (ЦП) устройства
Загрузка ЦП	Уровень загрузки ЦП
Свободное ОЗУ	Количество свободной оперативной памяти
Хранилища	Уровень загрузки физических и виртуальных хранилищ.
Версия ПО	Версия программного обеспечения устройства
Сборка интерфейса	Версия web-интерфейса
	Уровень сигнала GSM модема и IP-адрес сим карты,
GSM	выдаваемый оператором сотовой сети (при наличии GSM
	модема в модификации)
	Таблица интерфейсов Ethernet устройства (название, IP-адрес,
Сетевые интерфейсы	текущее состояние).
сетевые интерфеисы	Количество интерфейсов может отличаться от количества
	портов устройства, в зависимости от выбранных настроек.
Статус GPS	Состояние работы ГЛОНАСС/GPS приемника (при наличии в
ClaryC GP3	модификации)
Системный лог	Лог событий устройства.

1.7.2.2 Раздел «Журнал событий»

В данном разделе отображен журнал событий устройства. В поле «показывать строк» можно задать количество событий на странице.

Таблица 17 – Поля раздела «Журнал событий»

Название	Описание
NUM	Номер события
Дата	Дата события
Время	Время события
ID	Идентификатор (тип) события.
Сообщение	Описание события

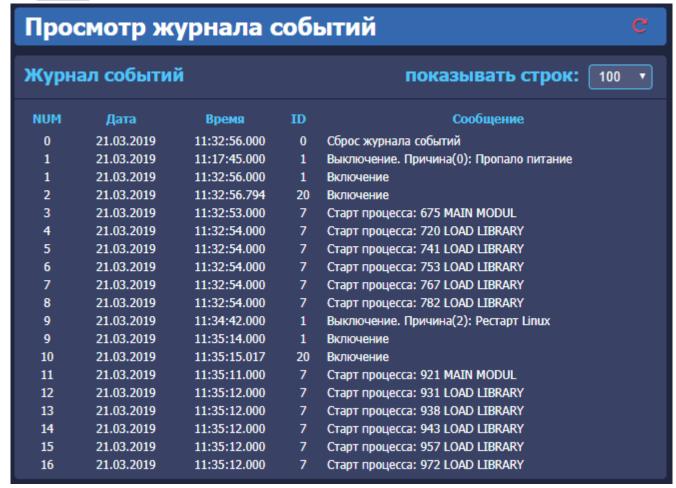


Рисунок 5 – раздел «Журнал событий»

1.7.2.3 Раздел «SPY:Менеджер»

В данном разделе задаются параметры менеджера восстановления процессов.

Для включения мониторинга состояния сервиса iec-control включите опцию «Мониторить iec-controls». При включенной опции сервис iec-control будет восстановлен автоматически в случае, если произойдет его сбой. Параметр «Период» задает частоту опроса состояния iec-controls.

Кнопкой можно добавить менеджер RS485-Ethernet бриджа. Кнопкой **можно** добавить менеджер пользовательского процесса linux.

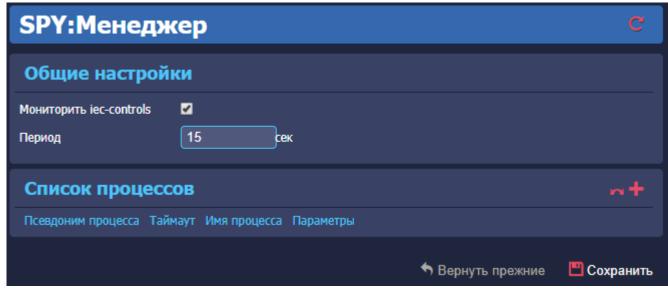


Рисунок 6 - Раздел «SPY:Менеджер»

1.7.2.4 Раздел «GSM»

Данный раздел предназначен для настройки мобильного Интернета на устройстве при наличии в модификации функции GSM-модема. Параметры SIM-карт задаются независимо.

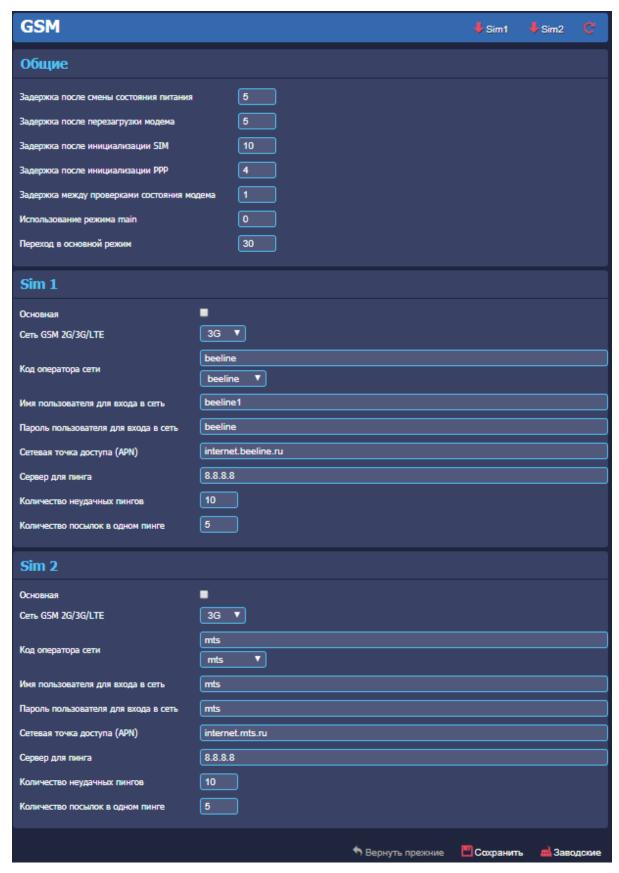


Рисунок 7 - Раздел «GSM»

Таблица 18 – Параметры SIM-карты

Таолица 18 — Параметры Slivi-карты			
Поле	Описание		
Общие параметры			
Задержка после смены	Задержка (сек) на подключение к сетям GSM после включения		
состояния питания	устройства.		
	Задержка (сек) на подключение к сетям GSM после		
модема	перезагрузки устройства.		
Задержка после	Задержка (сек) после инициализации SIM-карт устройства.		
инициализации SIM	1		
Задержка после	Задержка (сек) после инициализации РРР.		
инициализации РРР	ондорина (оси, посис инидиалиса дин и		
Задержка между проверками	Задержка (сек) между проверками состояния работы модема.		
состояния модема			
Использование режима main	Режим переключения Sim карт. 0 (по умолчанию)		
	Задержка (сек)на переход в основной режим при		
Переход в основной режим	восстановлении связи с основной Sim картой после потери		
	СВЯЗИ.		
	Параметры Sim 1 (Sim 2)		
Основная	Является ли данная Sim-карта основной.		
	Выбор приоритетного режима работы с сотовыми сетями:		
Сеть GSM 2G/3G/LTE	LTE — работа в сети LTE;		
CCTB GSIVI 2G/ SG/ ETE	2G – работа в сети 2G;		
	3G – работа в сети 3G.		
Код оператора сети	Код оператора мобильной сети. Выбирается из списка или		
под оператора сети	задается вручную.		
Имя пользователя для входа	Имя пользователя для доступа в сотовую сеть провайдера		
в сеть	иния пользователя для доступа в сотовую сеть проваидера		
Пароль пользователя для	Пароль для доступа в сотовую сеть провайдера		
входа в сеть	пароль для доступа в сотовую сеть проваидера		
	Имя сотовой сети (APN). Необходимо, если у SIM-карты		
Сетевая точка доступа (APN)	корпоративный тариф или выделенная сотовая сеть внутри		
	провайдера		
Сервер для пинга	IP-адрес удаленного хоста для проверки работы соединения		
Количество неудачных пингов	Количество неудачных ІСМР запросов, приводящее к		
поличество неудачных пингов	перезагрузке роутера.		
Количество посылок в одном	Количество ІСМР пакетов отправляемых при проверке		
пинге	доступности IP-адреса удаленного хоста.		

1.7.2.5 Раздел «GPS/ГЛОНАСС»

В данном разделе отображено состояние работы GPS/ГЛОНАСС приемника.

Таблица 19 – Описание полей раздела «GPS/ГЛОНАСС»

Настройка	Описание
Статус GPS	Состояние работы GPS/ГЛОНАСС приемника.
Статус антенны	Наличие подключенной антенны.
Активных спутников	Количество активных спутников GPS/ГЛОНАСС.
Статистика по спутникам	Детальная статистика по активным спутникам.

1.7.2.6 Раздел «Сетевые настройки»

В данном разделе можно задать параметры Ethernet, а также посмотреть текущее состояние активных интерфейсов Ethernet.

В таблице «Изменение параметров» приведены параметры существующих интерфейсов Ethernet. Добавление нового интерфейса выполняется кнопкой . Удаление существующего интерфейса осуществляется кнопкой . Нажатием кнопки можно добавить альтернативный адрес интерфейса.

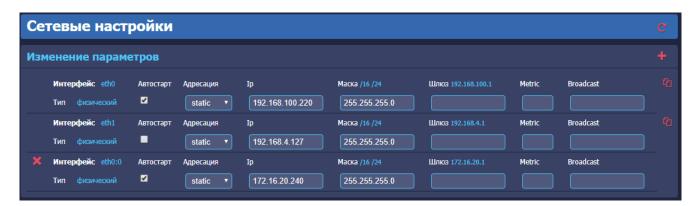


Рисунок 8 – Пример параметров интерфейсов Ethernet

Основные параметры интерфейсов Ethernet приведены в таблице ниже.

Таблица 20 – Основные параметры интерфейсов Ethernet

	, hh.t		
Название	Описание		
	Общие параметры		
Интерфейс	Имя интерфейса, задаваемое автоматически при добавлении.		
	Тип интерфейса, задаваемый при создании интерфейса.		
Тип	Физические интерфейсы привязаны к физическим портам Ethernet и их		
	нельзя создавать или удалять.		
Автостарт	Автоматический старт интерфейса при включении устройства		
	Метод адресации:		
	static (статический) – метод адресации интерфейсов по умолчанию.		
	рекомендованный метод адресации, при котором интерфейсу задается		
	статически выделенный IPv4 адрес.		
	manual (вручную) –метод, используемый для описания интерфейсов, для		
Адресация	которых нет настроек, применяемых по умолчанию. При данном методе,		
	интерфейс настраивается вручную командами up и down , или сценариями		
	из каталогов /etc/network/if-*.d.		
	dhcp (DHCP-клиент) – метод, используемый для получения адреса через		
	DHCP. Данный метод не рекомендован к использованию, так как при нем		
	устройство имеет динамический IP-адрес		
	Параметры адресации метода static		
IP	IP-адрес устройства		
Маска	Маска подсети		
Шлюз	Шлюз интерфейса		
Metric	Метрика шлюза, используемая для маршрута по умолчанию		
Droadcast	Широковещательный адрес, используемый для передачи		
Broadcast	широковещательных пакетов в сети		

Название	Описание	
Параметры адресации метода dhcp		
Metric	Метрика шлюза, используемая для маршрутов.	
Время аренды	22 ED 21114 B 20 MOO B DOMG 2D OLIFILI B 112 C 2V	
в часах	Запрашиваемое время аренды в часах.	
Время аренды	22 FRAUMBAOMOO BROMG AROUBLU B COMMURAY	
в секундах	Запрашиваемое время аренды в секундах.	

При добавлении нового интерфейса необходимо задать его типа и параметры, после чего нажать кнопку «Записать». Пример окна добавления нового интерфейса приведен ниже.

Рисунок 9 – Окно добавления нового интерфейса

Параметры интерфейсов приведены в таблице ниже.

Таблица 21 – Параметры интерфейсов Ethernet

Название	Описание	
T	Тип интерфейса:	
	bridge – мост;	
	vlan – виртуальная сеть (VLAN);	
	prp – резервирование по протоколу PRP;	
Тип	hsr – резервирование по протоколу HSR;	
	bond – агрегирование каналов Ethernet;	
	rstp – RSTP;	
	vrrp – VRRP.	
	Параметры bridge	
Slave 1 Slave n	Интерфейсы, объединенные в данный мост	
bridge_stp	Задействовать ли stp для данного моста	
Параметры vlan		
Vlan id	VLAN ID - идентификатор/номер виртуальной сети. У каждой VLAN	
Viairiu	должен быть уникальный идентификатор	
Interface	Интерфейс данной VLAN	
Priority	Приоритет VLAN при тегировании (0-7)	
Mac	MAC-адрес (уникальный идентификатор) VLAN	
	Параметры ргр	
Slave 1	Интерфейс 1 пары PRP	
Slave 2	Интерфейс 2 пары PRP	
Параметры hsr		
Slave 1	Интерфейс 1 кольца HSR	
Slave 2	Интерфейс 2 кольца HSR	

Название	Описание		
	Параметры bond		
Slave 1 Slave n	Интерфейсы, объединенные в единый канал		
	Режим агрегирования:		
	balance-rr – последовательная передача пакетов с Slave 1 по Slave n;		
	active-backup — активен один интерфейс, если активный интерфейс		
	вышел из строя (link down), другой интерфейс заменяет активный;		
	balance-xor – передача распределяется между интерфейсами на		
	основе формулы «(МАС_источника ХОR МАС_получателя) %		
	число_интерфейсов». Один интерфейс работает с определённым		
Тип	получателем. Режим обеспечивает балансировку нагрузки и		
INII	отказоустойчивость.		
	broadcast – все пакеты передаются параллельно по всем интерфейсам;		
	802.3ad – Link Agregation;		
	balance-tlb — входящие пакеты принимаются только активным сетевым		
	интерфейсом, исходящий трафик распределен в зависимости от		
	текущей загрузки интерфейсов;		
	balance-alb — входящий и исходящий трафик распределен в		
	зависимости от текущей загрузки интерфейсов.		
Miimon	Частота наблюдения (MII link). Данное значение определяет как часто		
IVIIIIIIOII	будет проверяться состояние соединения на каждом из интерфейсов.		
Down delay	Время ожидания, прежде чем отключить slave в случае отказа		
Down delay	соединения. Данная опция влияет на Miimon .		
Up delay	Время ожидания, прежде чем включить slave после восстановления		
	соединения. Данная опция влияет на Miimon .		
	Параметры rstp		
Slave 1 Slave n	Интерфейсы, объединенные в RSTP		
	Параметры vrrp		
ID	ID для виртуального роутера (VRID). Значение 0-255		
Проверка (сек)	Частота, с которой устройством отправляется сообщения о свой		
	активности.		
	Приоритет (Priority). Устройство с наибольшим приоритетом будет		
Приоритет	выбрано в качестве master и станет держателем virtual ip (адрес по		
	которому с устройством будут связываться другие устройства в сети).		

В поле «Текущее состояние устройства» отображены параметры и статистика работы активных интерфейсов , в примере ниже "eth0" – LAN1, "eth1" – LAN2, "lo" – localhost.

Текущее состояние устройства Link encap:Ethernet HWaddr 98:84:E3:03:3F:4C eth0 inet addr:172.16.4.60 Bcast:172.16.7.255 Mask:255.255.248.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:250442 errors:0 dropped:0 overruns:0 frame:0 TX packets:3596 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:29169193 (27.8 MiB) TX bytes:3717825 (3.5 MiB) Interrupt:175 eth1 Link encap:Ethernet HWaddr 98:84:E3:03:3F:4E inet addr:192.168.8.88 Bcast:192.168.8.255 Mask:255.255.255.0 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) 10 Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:2358 errors:0 dropped:0 overruns:0 frame:0 TX packets:2358 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:260082 (253.9 KiB) TX bytes:260082 (253.9 KiB)

Рисунок 10 – Пример текущего состояния интерфейсов Ethernet

1.7.2.7 Раздел «NTP»

В данном разделе приведены настройки и статистика синхронизации по протоколу NTP.

Таблица 22 – Настройки NTP

Столбец	Описание	
peer	Наличие соседнего сервера.	
ip/url	Адрес NTP сервера к которому осуществляются запросы синхронизации.	
prefer	Является ли данный сервер предпочитаемым.	
burst	Посылать 8 пакетов вместо одного.	
iburst	Ускорить начальный процесс синхронизации.	
nomodify	Запретить удаленную настройку.	
notrap	отправлять сообщение об исключении внешним серверам.	
ignore	Запретить любые сообщения с указанного адреса.	
minpoll	Минимальное время опроса сервера.	
maxpoll	Максимальное время опроса сервера.	
	Stratum уровень устройства. Для устройств, синхронизирующих	
stratum	собственные часы непосредственно от систем ГЛОНАСС/GPS, данное	
	значение, как правило, задается равным 1.	
refid	Вышестоящий сервер.	

В таблице «Синхронизация» области «Статистика» отображен список серверов точного времени, находящихся в одной сети с устройством.

Таблица 23 – Описание таблицы «Синхронизация»

Столбец	Описание
	IP-адрес удаленного сервера (из списка в конфигурационном файле) Перед IP-адресом сервера может стоять префикс, обозначающий следующее:
remote	* (звездочка) — устройство синхронизируется от данного источника; + (плюс) — сервер доступен в качестве источника синхронизации; - (минус) — использовать данный сервер в качестве источника синхронизации не рекомендуется; # (решетка) — выбран для синхронизации, но есть 6 лучших кандидатов; X (крестик) — сервер недоступен; . (точка) — исключен из списка кандидатов из-за большого расстояния; пробел — слишком большой уровень, цикл или ошибка. Для локального сервера точного времени (приемник ГЛОНАСС/GPS данного устройства) вместо IP-адреса отображается текст «LOCAL(0)». В случае, когда приемник ГЛОНАСС/GPS данного устройства является источником синхронизации, он отображается как *LOCAL(0). Внутренний
refid	приемник ГЛОНАСС/GPS по умолчанию имеет Stratum 0. Reference ID сервера
st	Stratum сервера
t	Тип пира (u- unicast, m- multicast)
when	Время последней синхронизации
poll	Время в секундах, за которое сервис NTP синхронизируется с пиром
reach	Доступность сервера — восьмеричное представление массива из 8 бит, отражающего результаты последних восьми попыток соединения с сервером. Значение 377 означает, что последние восемь запросов были успешны.
delay	Время задержки ответа от сервера
offset	Разница времени между локальным сервером и сервером синхронизации. Положительное значение означает, что локальные часы опережают часы удаленного сервера, отрицательное — отстают.
jitter	Дисперсия - мера статистических отклонений от значения смещения (поле offset) по нескольким успешным парам запрос-ответ. Меньшее значение дисперсии предпочтительнее, поскольку позволяет точнее синхронизировать время.

В поле **Статистика по клиентам** отображена статистика синхронизации по протоколу NTP клиентов, подключенных к устройству за последние 20 минут.

1.7.2.8 Раздел «Общие настройки»

В данном разделе находятся общие настройки устройства. В нем можно задать источник синхронизации времени (NTP или RTU327) и часовой пояс.

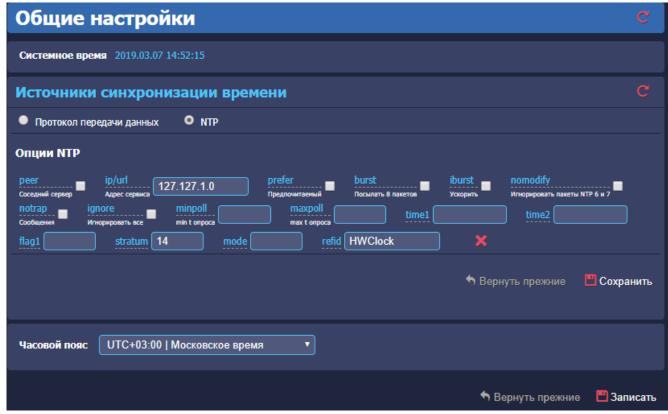


Рисунок 11 - Внешний вид раздела «Общие настройки»

1.7.2.9 Раздел «Пользователи»

Удалить пользователя (действие доступно только для администраторов) можно с помощью кнопки **№**. Чтобы изменить пароль пользователя следует нажать кнопку **№**.

Таблица 24 – Описание таблицы «Список активных пользователей»

Столбец	Описание
Nº	Порядковый номер
Логин	Имя пользователя
	Права учетной записи:
	Администратор – пользователь может изменять параметры
	устройства, добавлять, удалять и задавать пароль учетных записей;
Роль	Менеджер – пользователь может изменять только параметры
	устройства;
	Оператор – пользователь может просматривать параметры устройства
	без возможности редактирования.

По умолчанию в устройстве зарегистрирован пользователь **admin** (пароль **admin**, роль администратор).

1.7.2.10 Раздел «Инструменты»

Перезагрузка

Для перезагрузки устройства нажмите кнопку

Статусы служб

В данном поле отображен статус запущенных служб.

Ping host

Утилита для проверки соединения с удаленным узлом.

Чтобы проверить соединение:

- Введите IP-адрес удаленного узла в поле **Хост**;
- Введите лимит лога;
- Нажмите кнопку **Start**, и в поле **Лог** будет отображен результат проверки.

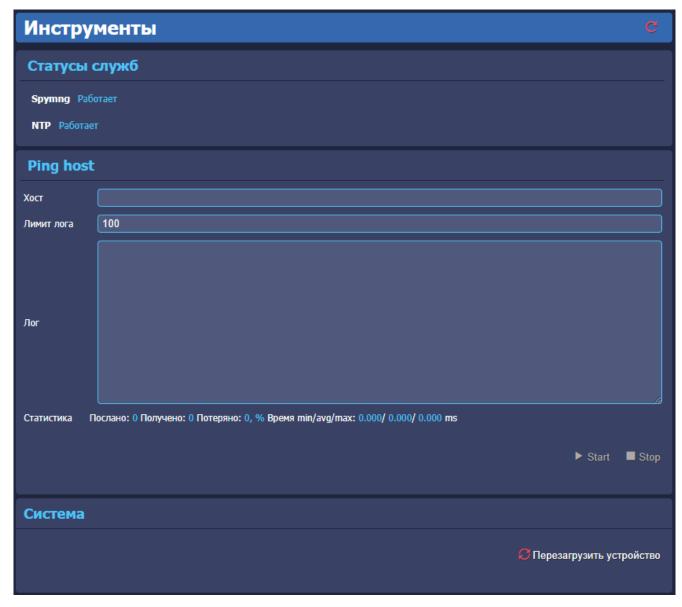


Рисунок 12 - Внешний вид раздела «Инструменты»

2 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

Вся обязательная информация по маркировке нанесена на лицевой и боковой панели. Маркировка выполнена способом, обеспечивающим ее сохранность на все время эксплуатации устройства. Перечень информации, содержащейся в маркировке на лицевой панели:

- наименование и условное обозначение;
- назначение светодиодов устройства;
- назначение клеммных соединений и разъемов устройства.
- Перечень информации, содержащейся в маркировке на боковой панели:
- наименование и условное обозначение;
- товарный знак;

- порядковый номер по системе нумерации предприятия-изготовителя;
- дата изготовления;

Для предотвращения несанкционированного доступа к внутренним электрическим элементам корпус устройства должен быть опломбирован путем нанесения саморазрушающейся наклейки.

3 УПАКОВКА

Устройства размещается в коробке из гофрированного картона.

Эксплуатационная документация уложена в потребительскую тару вместе с устройством.

В потребительскую тару вложена товаросопроводительная документация, в том числе упаковочный лист, содержащий следующие сведения:

- наименование и условное обозначение;
- дату упаковки;
- подпись лица, ответственного за упаковку.

4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание устройства заключается в профилактических осмотрах.

При профилактическом осмотре должны быть выполнены следующие работы:

- проверка обрыва или повреждения изоляции проводов и кабелей;
- проверка надежности присоединения проводов и кабелей;
- проверка отсутствия видимых механических повреждений, а также пыли и грязи на корпусе устройства.

Периодичность профилактических осмотров устройства устанавливается потребителем, но не реже 1 раз в год.

Эксплуатация устройства с повреждениями категорически запрещается.

5 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Транспортирование устройств должно производиться в упаковке предприятияизготовителя любым видом транспорта, защищающим от влияний окружающей среды, в том числе авиационным в отапливаемых герметизированных отсеках самолетов.

Размещение и крепление в транспортных средствах упакованных устройств должно обеспечивать его устойчивое положение, исключать возможность ударов друг о друга, а также о стенки транспортных средств.

Укладывать упакованные устройства в штабели следует с правилами и нормами, действующими на соответствующем виде транспорта, чтобы не допускать деформации транспортной тары при возможных механических перегрузках.

При погрузке и выгрузке запрещается бросать и кантовать устройства.

После продолжительного транспортирования при отрицательных температурах приступать к вскрытию упаковки не ранее 12 часов после размещения устройств в отапливаемом помещении.

Устройства следует хранить в невскрытой упаковке предприятия-изготовителя на стеллаже в сухом отапливаемом и вентилируемом помещении, при этом в атмосфере помещения должны отсутствовать пары агрессивных жидкостей и агрессивные газы.

Средний срок сохранности в потребительской таре в отапливаемом помещении, без консервации - не менее 2 лет.

нормальные климатические факторы хранения:

- температура хранения +20 ± 5 $^{\circ}$ C;
- значение относительной влажности воздуха: 30-80 %.

Предельные климатические факторы хранения:

- температура хранения от -40 до +70 ^оС;
- значение относительной влажности воздуха: верхнее 100% при 30°C.

6 УТИЛИЗАЦИЯ

Устройства не представляют опасности для жизни, здоровья людей и окружающей среды. Устройства не содержат драгоценных и редкоземельных металлов.

После окончания срока службы, специальных мер по подготовке и отправке устройств на утилизацию не предусматривается.

7 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

7.1 Эксплуатационные ограничения и меры безопасности

К эксплуатации устройства должны допускаться лица, изучившие настоящее руководство по эксплуатации и обладающие базовыми знаниями в области средств вычислительной техники.

Устройство может размещаться вне взрывоопасных зон как на открытом воздухе, так и в помещении. При этом устройство должен быть защищен от прямого воздействия атмосферных осадков. Рабочее положение — вдоль DIN-рейки.

Для нормального охлаждения устройства, а также для удобства монтажа и обслуживания, при монтаже устройства сверху и снизу необходимо предусмотреть свободное пространство не менее 100 мм. Принудительная вентиляция не требуется.

- Производитель не несет ответственность за ущерб, вызванный неправильным монтажом, нарушением правил эксплуатации или использованием оборудования не по назначению.
- Во время монтажа, эксплуатации и технического обслуживания оборудования необходимо соблюдать «Правила технической эксплуатации электроустановок потребителей».
- Монтаж и эксплуатацию оборудования должен проводить квалифицированный персонал, имеющий группу по электробезопасности не ниже 3 и аттестованный в установленном порядке на право проведения работ в электроустановках потребителей до 1000 В.
- На лице, проводящем монтаж, лежит ответственность за производство работ в соответствии с настоящим руководством, требованиями безопасности и электромагнитной совместимости.
- В случае возникновения неисправности необходимо отключить питание от устройства, демонтировать и передать его в ремонт производителю.

7.2 Монтаж

7.2.1 Подготовка к монтажу

Распаковывание устройства следует производить после выдержки упаковки в нормальных условиях не менее двух часов.

При распаковывании следует соблюдать следующий порядок операций:

- открыть коробку;
- из коробки извлечь:
 - вкладыш;

- комплект монтажный;
- устройство.
- произвести внешний осмотр устройства:
 - проверить отсутствие видимых внешних повреждений корпуса и внешних разъемов;
 - внутри устройства не должно быть незакрепленных предметов;
 - изоляция не должна иметь трещин, обугливания и других повреждений;
 - маркировка устройства, комплектующих изделий должна легко читаться и не иметь повреждений.

7.2.2 Установка на DIN-рейку

Устройство устанавливается в стойку 19" (монтажный кронштейн высотой 3U) или на монтажную рейку (DIN-профиль 35 мм) в следующей последовательности:

- корпус устройства ставится на рейку, цепляясь верхними выступами;
- корпус опускается вниз относительно верхнего выступа до щелчка.

ВНИМАНИЕ! МОНТАЖНАЯ РЕЙКА (МОНТАЖНЫЙ КРОНШТЕЙН) ДОЛЖНА БЫТЬ ЗАЗЕМЛЕНА.

7.2.3 Внешние подключения

Внешние подключения осуществляются с помощью разъемов MSTBT 2,5/4-ST проводами сечением до $1,5\,\mathrm{mm}^2$.

8,3 18,2 2,5 5

Рисунок 13 — Внешний вид разъема MSTBT 2,5/4-ST

Рисунок 14 — Габаритные размеры разъема MSTBT 2,5/4-ST

ВНИМАНИЕ! ПОДКЛЮЧЕНИЕ К КЛЕММАМ УСТРОЙСТВА ПРОИЗВОДИТЬ ПРИ ОБЕСТОЧЕННОМ ОБОРУДОВАНИИ

ВНИМАНИЕ! ПРИ ПРОВЕРКЕ ГОТОВНОСТИ К РАБОТЕ ПРОВЕРИТЬ ПРАВИЛЬНОСТЬ ПОДКЛЮЧЕНИЙ, КРЕПЛЕНИЕ КЛЕММНИКОВ.

7.2.4 Шина **T-BUS**

Шина T-BUS представляет собой 5-ти проводную шину, составляемую из произвольного количества единичных T-образных шинных соединителей ME 22,5 T-BUS 1,5/5-ST-3,81, крепящихся к DIN-рейке с помощью защелок.

Шина T-BUS предназначена для обеспечения питания установленных на ней устройств TOPAZ. Установленные на шине T-BUS устройства, поддерживающие передачу данных по интерфейсу RS-485, также объединяются в единую линию связи RS-485 типа «общая шина».

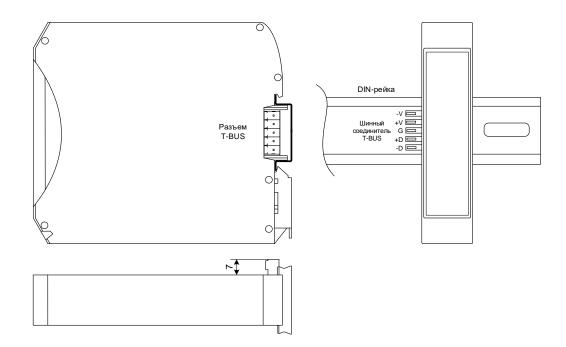


Рисунок 15 – Размещение устройства на DIN-рейке с шиной T-BUS

ВНИМАНИЕ! ПРИ УСТАНОВКЕ УСТРОЙСТВА НА ШИНУ Т-BUS НЕОБХОДИМО КОНТРОЛИРОВАТЬ ПОЛОЖЕНИЕ КЛЕММ ШИННОГО СОЕДИНИТЕЛЯ Т-BUS ОТНОСИТЕЛЬНО РАЗЪЕМА Т-BUS НА ТЫЛЬНОЙ СТОРОНЕ КОРПУСА.

Для подключения к шине T-BUS монтажных проводов используются штекеры MC 1,5/5 ST 3,81 и IMC 1,5/5 ST 3,81. На рисунке ниже приведен внешний вид шиты T-BUS в сборе, где:

- A шинный соединитель ME 22,5 T-BUS 1,5/5-ST-3,81
- В штекер МС 1,5/5-ST-3,81
- С штекер IMC 1,5/5-ST-3,81

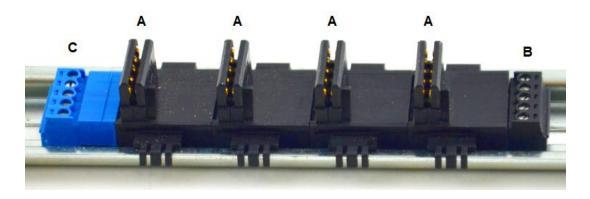


Рисунок 16 – Внешний вид шины T-BUS

<u>Примечание</u> Штекер IMC 1,5/5-ST-3,81 не входит в стандартный комплект поставки устройства.

7.2.5 Подключение питания

Количество и тип каналов питания устройства зависят от исполнения по питанию, согласно заказной кодировке. При наличии напряжения питания на канале питания загорится индикатор **PWR**.

При подключении источника питания постоянного тока к каналу питания 220 В, полярность значения не имеет.

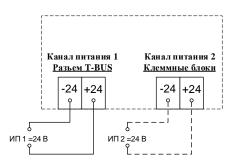


Рисунок 17 – Схема подключения питания каналов 24В

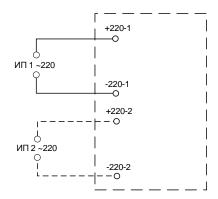


Рисунок 18 – Схема подключения питания каналов 220В

ВНИМАНИЕ! ОДНОВРЕМЕННОЕ ПОДКЛЮЧЕНИЕ К СЕТИ ПИТАНИЯ 24 В И 220 В НЕ ПОДДЕРЖИВАЕТСЯ.

ВНИМАНИЕ! СЕТЬ ПИТАНИЯ (≈/= 220 В) ДОЛЖНА ИМЕТЬ ПРОВОД ЗАЗЕМЛЕНИЯ.

7.2.5.1 Подача питания на шину T-BUS

Рекомендуемое напряжение питания шины T-BUS 24 В. Подача питания на шину T-BUS осуществляется одним из следующих способов:

- от внешнего источника питания, подключенного к шине с помощью штекера;
- от источника питания ТОРАZ, установленного на шине.

ВНИМАНИЕ! НЕОБХОДИМО УЧИТЫВАТЬ, ЧТОБЫ НОМИНАЛЬНОЕ ЗНАЧЕНИЕ НАПРЯЖЕНИЯ ПИТАНИЯ ШИНЫ Т-BUS ВХОДИЛО В ДОПУСТИМЫЙ ДИАПАЗОН ПИТАНИЯ ДЛЯ КАЖДОГО УСТРОЙСТВА ТОРАZ, УСТАНОВЛЕННОГО НА ШИНЕ. НОМИНАЛЬНЫЕ ЗНАЧЕНИЯ И ДОПУСТИМЫЕ ДИАПАЗОНЫ ПИТАНИЯ УСТРОЙСТВ ТОРАZ ПРИВЕДЕНЫ В РУКОВОДСТВАХ ПО ЭКСПЛУАТАЦИИ НА СООТВЕТСТВУЮЩИЕ УСТРОЙСТВА.

ВНИМАНИЕ! НЕДОПУСТИМО ПОДАВАТЬ ВНЕШНЕЕ НАПРЯЖЕНИЕ ПИТАНИЯ 110/220 В НА ШИНУ Т-BUS, ТАК КАК ЭТО ПРИВЕДЕТ К ВЫХОДУ ИЗ СТРОЯ ПОДКЛЮЧЕННЫХ К НЕЙ УСТРОЙСТВ.

7.2.6 Подключение к сети Ethernet

Подключение к сети Ethernet осуществляется, используя промышленные коммутаторы, объединенные в локальную технологическую сеть с кольцевой или иной топологией (рекомендуется применять экранированные кабели и патч-корды).

7.2.6.1 Подключение оптоволоконных портов Ethernet

При подключении устройства по оптическому интерфейсу Ethernet используется две оптоволоконные линии. Одна из оптических линий используется для передачи от устройства 1 к устройству 2, а другая от устройства 2 к устройству 1, формируя, таким образом, полнодуплексную передачу данных.

Необходимо соединить Тх-порт (передатчик) устройства 1 с Rх-портом (приемник) устройства 2, а Rх-порт устройства 1 с Тх-портом устройства 2. При подключении кабеля рекомендуется обозначить две стороны одной и той же линии одинаковой буквой (А-А, В-В, как показано ниже).

Патч-корд LC-LC (дуплекс)

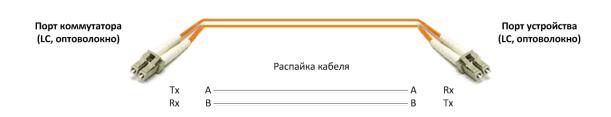
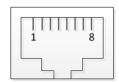


Рисунок 19 – Схема подключения оптоволоконного кабеля

ВНИМАНИЕ! УСТРОЙСТВО ЯВЛЯЕТСЯ ПРОДУКТОМ КЛАССА CLASS 1 LASER/LED. ИЗБЕГАЙТЕ ПРЯМОГО ПОПАДАНИЯ В ГЛАЗ ИЗЛУЧЕНИЯ LASER/LED.

7.2.6.2 Подключение Ethernet-портов 10/100 BaseT(X)


Порты 10/100BaseTX, расположенные на передней панели, используются для подключения Ethernet-устройств.

На рисунке ниже схема расположения контактов для портов MDI (подключение устройств пользователя) и MDI-X (подключение коммутаторов/концентраторов), а также показана распайка прямого и перекрестного Ethernet-кабелей.

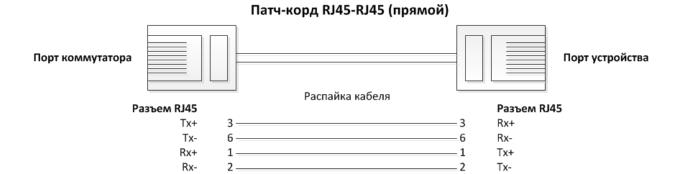


Таблица 25 – Назначение контактов

Контакт	Сигнал	
порт MDI		
1	Tx+	
2	Tx-	
3	Rx+	
6	Rx-	
порт MDI-X		
1	Rx+	
2	Rx-	
3	Tx+	
6	Tx-	

8-контактный порт RJ45

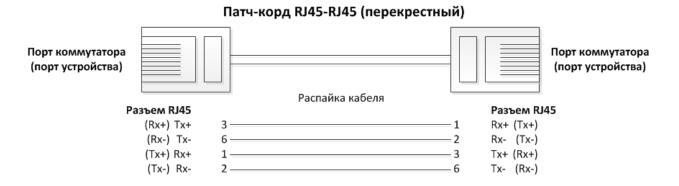
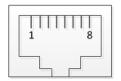


Рисунок 20 – Схема соответствия контактов


7.2.6.3 Подключение Ethernet-порта 1000BaseT(X)

Данные с порта 1000BaseT(X) передаются по дифференциальной сигнальной паре TRD+/- с помощью медных проводов.

Таблица 26 – Назначение контактов

Контакт	Сигнал	
порт MDI/MDI-X		
1	TRD (0) +	
2	TRD (0) -	
3	TRD (1) +	
4	TRD (2) +	
5	TRD (2) -	
6	TRD (1) -	
7	TRD (3) +	
8	TRD (3) -	

8-контактный порт RJ45

7.2.7 Подключение к сетям последовательной передачи

7.2.7.1 Подключение к сетям RS-485

Схема подключения к сетям (общим шинам) RS-485 приведена на рисунке 21. Назначение контактов клеммных блоков RS-485 приведено на рисунке 22. Клеммы подключения к интерфейсу RS-485-1 контроллерной платы устройства дублированы на шине T-BUS.

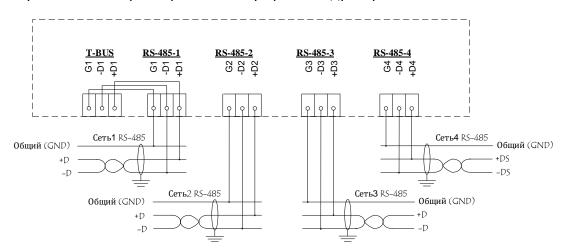


Рисунок 21 – Схема подключения устройства к сетям RS-485.

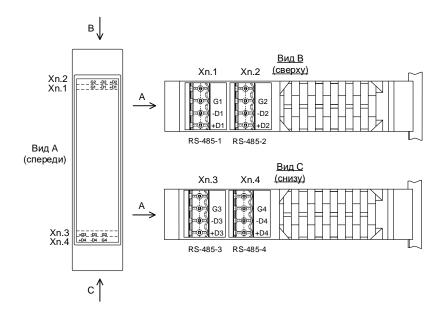


Рисунок 22 – Назначение контактов клеммных блоков RS-485.

7.2.7.2 Подключение к сетям RS-422

Схема подключения к сети RS-422 приведена на рисунке 23. Назначение контактов клеммных блоков RS-422 приведено на рисунке 24. Сопротивление согласующего резистора (R_T) рассчитывается в соответствии с длиной и волновым сопротивлением кабеля.

ВНИМАНИЕ! СХЕМА ПОДКЛЮЧЕНИЯ УСТРОЙСТВА ЗАВИСИТ ОТ ПОДКЛЮЧЕНИЯ ЕГО В КАЧЕСТВЕ ВЕДУЩЕГО (MASTER) ИЛИ ВЕДОМОГО (SLAVE), КАК ПОКАЗАНО НА РИСУНКЕ 23.

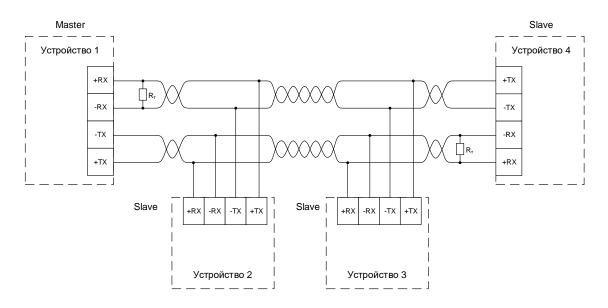


Рисунок 23 – Схема подключения устройств к сети RS-422.

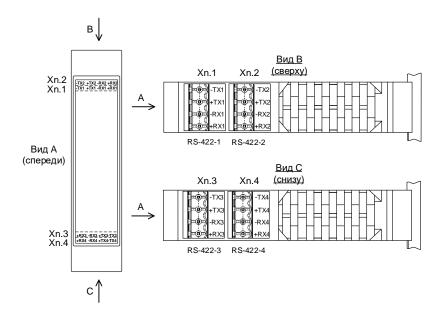


Рисунок 24 – Назначение контактов клеммных блоков RS-422.

7.2.8 Подключение каналов дискретного ввода-вывода

7.2.8.1 Режим дискретного ввода

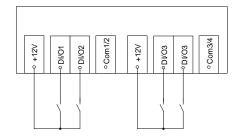


Рисунок 25 — Подключения каналов дискретного ввода с питанием от внутреннего источника питания.

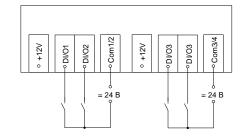


Рисунок 26 — Подключения каналов дискретного ввода с питанием от внешнего источника питания.

7.2.8.2 Режим дискретного вывода

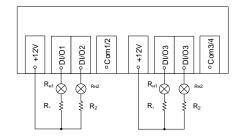


Рисунок 27 — Подключения каналов дискретного вывода с питанием от внутреннего источника питания.

ВНИМАНИЕ! СОПРОТИВЛЕНИЕ РЕЗИСТОРОВ $R_1...R_4$ ПОДБИРАЮТСЯ В ЗАВИСИМОСТИ ОТ СОПРОТИВЛЕНИЯ НАГРУЗКИ $R_{H1}...R_{H4}$, ТАКИМ

ОБРАЗОМ, ЧТОБЫ СУММАРНЫЙ ТОК НАГРУЗКИ ВСЕХ ЦЕПЕЙ НЕ ПРЕВЫШАЛ МАКСИМАЛЬНЫЙ ТОК НАГРУЗКИ ВНУТРЕННЕГО ИСТОЧНИКА ПИТАНИЯ (0,2 A)

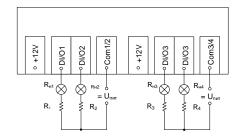


Рисунок 28 — Подключения каналов дискретного вывода с питанием от внешнего источника питания.

ВНИМАНИЕ! ВЫХОДНОЕ НАПРЯЖЕНИЕ ВНЕШНЕГО ИСТОЧНИКА НЕ ДОЛЖНО БЫТЬ БОЛЕЕ 24 В. СОПРОТИВЛЕНИЕ РЕЗИСТОРОВ $R_1...R_4$ ПОДБИРАЮТСЯ В ЗАВИСИМОСТИ ОТ СОПРОТИВЛЕНИЯ НАГРУЗКИ $R_{H1}...R_{H4}$, ТАКИМ ОБРАЗОМ, ЧТОБЫ ТОК В ЦЕПИ НЕ ПРЕВЫШАЛ 0,4 А.

7.2.9 Подключение SIM-карт (при наличии GSM модема)

Для обеспечения возможности подключения устройства к сети Интернет через сотовую связь понадобится SIM-карта формата mini-SIM. До установки её в устройство, необходимо отключить в настройках SIM-карты запрос PIN-кода при включении.

7.2.10 Подключение интерфейса человек-машина

Подключение сенсорного монитора **TOPAZ HMI15** осуществляется посредством двух кабелей: кабеля передачи видео данных **HDMI** - **DVI-D** и кабеля передачи данных сенсорного экрана **USB**, как показано на рисунке ниже.

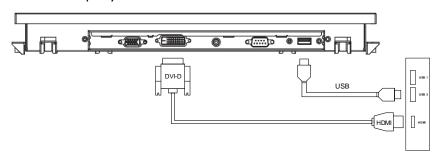


Рисунок 29 – Подключение каналов ввода/вывода монитора

Подключение других сенсорных мониторов, а также кнопочной панели TOPAZ HMI7 производится по схеме аналогичной схеме подключения сенсорного монитора HMI15.

Рисунок A.1 – Внешний вид устройства TOPAZ IEC DAS MX240 E2R4 (2GTx-4R)

Рисунок A.2 – Внешний вид устройства TOPAZ IEC DAS MX240 E2R2 GSM/DIO4 (2Tx-2R)

Рисунок A.3 – Внешний вид устройства TOPAZ IEC DAS MX240 E2R4 GSM (2GTx-4R)

Рисунок A.4 — Внешний вид устройства TOPAZ IEC DAS MX240 E6R4 GSM/PTS (2GTx-4FxS-4R)

Рисунок A.5 – Внешний вид устройства TOPAZ IEC DAS MX240 E4R12 (2GTx-2Tx-12R)

Рисунок A.6 – Внешний вид устройства TOPAZ IEC DAS MX240 E4R4 SSD32/HMI7 (4GTx-4R)

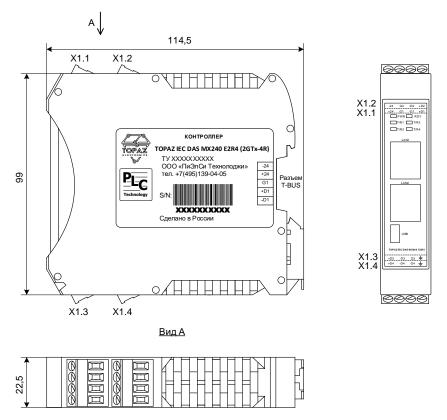


Рисунок А.7 — Габаритные размеры устройства TOPAZ IEC DAS MX240 E2R4 (2GTx-4R)

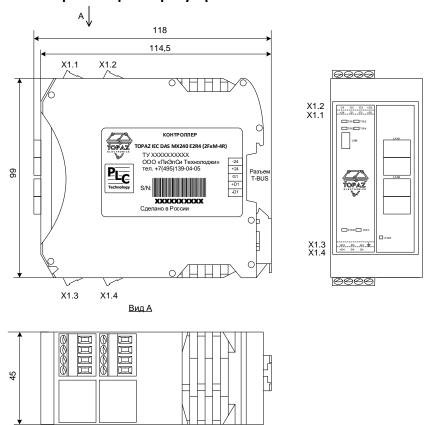


Рисунок A.8 — Габаритные размеры устройств TOPAZ IEC DAS MX240 E2R4 (2FxS-4R), TOPAZ IEC DAS MX240 E2R4 (2FxM-4R)

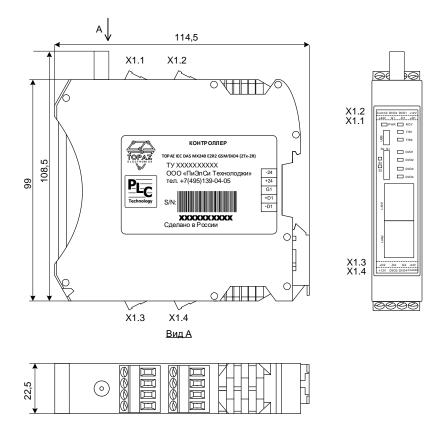


Рисунок A.9 — Габаритные размеры устройства TOPAZ IEC DAS MX240 E2R2 GSM/DIO4 (2Tx-2R)

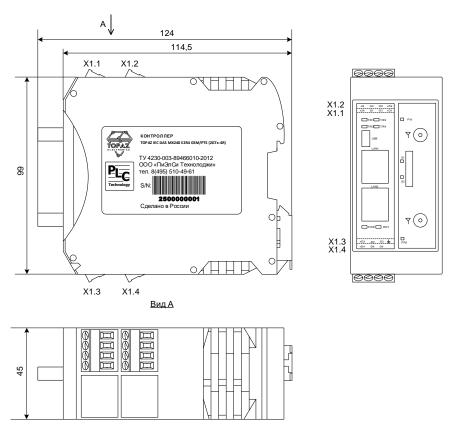


Рисунок A.10 — Габаритные размеры устройства TOPAZ IEC DAS MX240 E2R4 GSM/PTS (2GTx-4R)

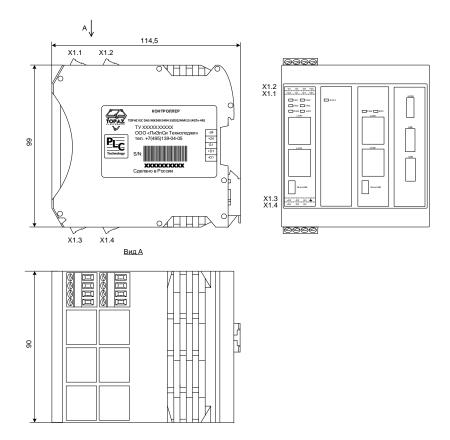


Рисунок А.11 — Габаритные размеры устройства TOPAZ IEC DAS MX240 E4R4 SSD32/HMI15 (4GTx-4R)

Таблица А.1 – Обозначения клемм и портов

	•	
Обозначение*	Описание	
Питание напряжением постоянного тока		
+24 (+Vn)	K ROMAN I RIATOURA 24 P	
-24 (-Vn)	Клеммы питания 24 В	
Питание напряжением переменного тока		
~ 220 B	Клеммы питания 220 В	
Заземление		
Ţ	клемма заземления	
Интерфейс конфигурирования		
USB	USB порт для подключения через консоль	
Интерфейс RS-485		
Gn	GND	
+Dn	data+	
–Dn	data-	
Интерфейс RS-422		
+TXn	TD(B)+	
-TXn	TD(A)-	
+RXn	RD(B)+	
-RXn	RD(A)-	
Интерфейс Ethernet		
LANn	Порт Ethernet	

Универсальные каналы ввода-вывода		
DIO1, DIO2	Каналы дискретного ввода 1 и 2 (группа 1)	
COM1/2	Общий провод (группа 1)	
+12V	Выход источника напряжения 12 В	
DIO3, DIO4	Каналы дискретного ввода 3 и 4 (группа 2)	
COM3/4	Общий провод (группа 2)	
+12V	Выход источника напряжения 12 В	
* n – номер входа/порта		

Таблица А.2 – Обозначения кнопок и индикаторов

Tuoninga A.E	Coosid terrin knotok i indinktropos	
Обозначение*	Описание	
Кнопки		
RS	Сброс устройства	
RB	Активация загрузчика	
Индикаторы		
PWR	Наличие питания	
RDY	Состояние готовности устройства	
T/Rn	Передача информации по интерфейсу связи RS-485	
DI/On	Состояния канала дискретного ввода/вывода	
S1	Передача данных по каналу GSM1	
S2	Передача данных по каналу GSM2	
HDD	Работа с накопителем данных	
PPS	Наличие синхронизации GPS/ГЛОНАСС	
* n – номер входа/порта		

ПРИЛОЖЕНИЕ Б

Утилита PuTTY — одна из распространенных бесплатных программ, не требующая установки. В данном разделе приведено описание подключения к устройству с помощью данной утилиты.

Сайт разработчика:

http://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html.

Ссылка непосредственно исполняемый файл программы:

https://the.earth.li/~sgtatham/putty/latest/x86/putty.exe.

Подключение через серийный порт

После запуска программы PuTTY откроется окно настройки, где во вкладке **Session** необходимо выбрать тип соединения **Serial** и его основные параметры (номер виртуального порта будет отличаться от приведенного в примере в зависимости от вашей системы):

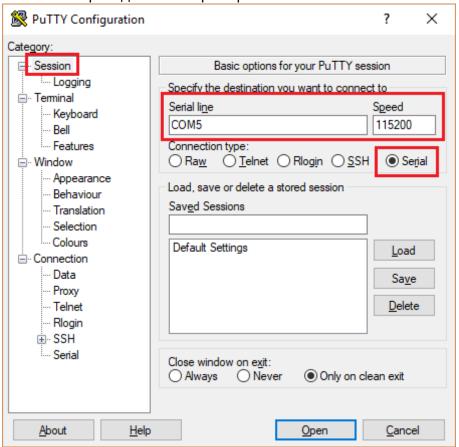


Рисунок Б.1 – Задаваемые настройки раздела Session (сессия)

В настройках соединения (**Connection**) — выбрать последовательный порт (**Serial**) и установить параметры соединения согласно таблице 15:

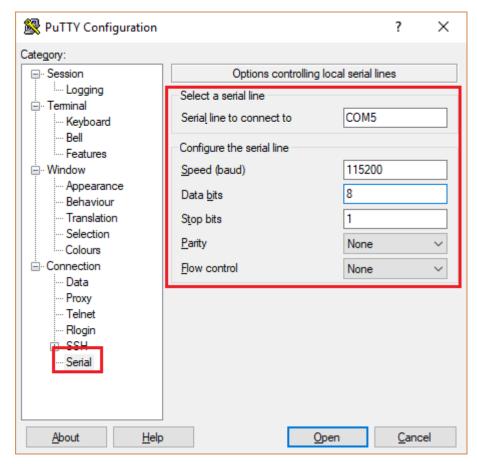


Рисунок Б.2 – Задаваемые настройки раздела Serial (серийный порт)

После настройки параметров последовательного порта, необходимо нажать кнопку «Открыть» (Open) для установки соединения и вызова окна консоли.

Подключение через Ethernet порт

Для подключения к устройству по протоколу SSH, во вкладке **Session** необходимо выбрать тип соединения **SSH** и его основные параметры:

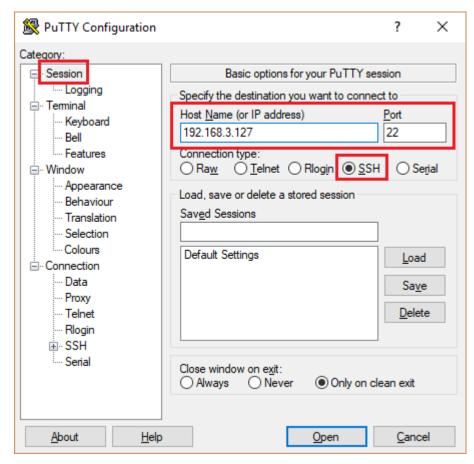


Рисунок Б.3 – Задаваемые настройки раздела Session (сессия)

После настройки параметров последовательного порта, необходимо нажать кнопку «Открыть» (Open) для установки соединения и вызова окна консоли.